HTRF technology in GPCR and kinase screening

Cisbio international has developed a universal and sensitive assay system that allows for HTS of a large range of GPCRs and kinases, the major targets in drug discovery.

In a recent announcement, Schering AG confirmed that its French subsidiary Schering SAS had completed the transfer of the radiopharmaceutical business of Cisbio international to a consortium formed by the Belgian companies Ion Beam Applications SA (IBA) and the Institut National des Radioéléments (IRE). The new owners have acquired all businesses under the Cisbio international umbrella, including radiopharmaceuticals and in vitro diagnostics.

Cisbio international is an established developer of technologies that are used in assay development and drug screening procedures to enhance drug discovery, and offers a comprehensive technological platform for G-Protein Coupled Receptor Screening (GPCR) screening. Cisbio is a pioneer in the field of homogeneous fluorescence methodologies, and TR-FRET in particular, via its proprietary technology, HTRF®. The company’s HTRF division will continue to operate under the new ownership, and Cisbio says it is committed to R&D initiatives and to partnerships and customer-based programmes where its HTRF technology platform will be effectively deployed.

Targeting GPCRs

GPCRs are transmembrane receptors that transmit signals from the outside to the inside of a cell. They are the most important target class investigated in the drug discovery process. Upon activation, GPCRs carry information within the cell via two major signaling pathways: one results in variations of the cyclic AMP (cAMP) level, whereas the other results in a transient increase of intracellular Ca2+ triggered by inositol(1,4,5)triphosphate (IP3).

GPCRs are understood to be involved in every aspect of human physiology, including sleep regulation, blood pressure, mood, food intake, perception of pain, control of cancer growth and immune response, and are therefore of major interest to pharmaceutical companies because they are druggable targets. Based on this Cisbio recognised the need to develop advanced assay technologies that can more accurately investigate and assess biological mechanisms and provide drug developers with critical information about cell function. Last year, Cisbio launched its homogeneous assay for use in high-throughput drug screening applications, the IP-One Assay System, a screening platform that delivers precise and time-sensitive second messenger measurement, and also represents a novel functional means of precisely investigating GPCR mechanics occurring at the membrane level. IP-One, which is based on Cisbio’s HTRF technology, is the first high throughput system that can easily detect inositol(1)phosphate (IP1), one of the major products of the phosphatidyl inositol cascade, which tightly correlates with Gq-coupled activity.

IP1 is the major degradation product of IP3, inositol(1,4,5)triphosphate. IP-One, the HTRF®-based assay, was developed to quantify the cellular accumulation of IP1, and the design of the assay was enabled through the synthesis of IP1 analogues and by the generation of highly specific monoclonal antibodies directed against IP1.

“Cisbio has consistently proven its commitment to developing critical new assay development technologies for its customers and with our IP-One Assay, we have expanded our capabilities to provide a strategic tool that broadens our customers’ drug development capabilities, specifically in the targeting of GPCRs,” says Francois Degorce, head of HTRF marketing & business development, Cisbio international. “GPCRs are the most important target class investigated in the drug discovery process and the integration of our IP-One assay and Cisbio’s proprietary HTRF technology allows customers to screen these targets with a high degree of reliability. Concurrently, the high pharmacological relevance of the assay produces fine lead characterisation and optimisation that are much sought-after in secondary screening operations or in GPCR mechanistic studies. “This HTRF technology-based assay is homogeneous, non-radioactive, and well adapted to HTS and to miniaturisation,” he adds. “Comparison with reference functional assays such as the quantification of total

A technician carrying out a cryptate synthesis step.
What if staying up to date with the latest technology published in journals and patents were as easy as pushing a button?

It is.

With the “Keep Me Posted” alerting feature, SciFinder sends you automatic updates on areas you—and your competitors—are interested in.

You can monitor specific research topics, companies, authors, substances, or sequences, and choose how frequently you receive notifications: daily, monthly, or weekly.

The service isn’t just convenient, it’s incredibly current. Journal article records often appear in SciFinder before they’re even in print. New references, substances, and sequences are added daily. Patents from all the major offices are added within two days of issuance.

As with all SciFinder features, Keep Me Posted is integrated with your workflow. At any point in a search (including the beginning), simply click on the Keep Me Posted button. SciFinder tracks your steps and will generate the appropriate alert—even for complex topics. When you receive a notification, you can follow each reference as you would in a search: find citing or cited articles (with links to the electronic full text), and follow referenced substances and reactions for further information.

Comprehensive, intuitive, seamless—SciFinder doesn’t just alert you, it’s part of the process. To find out more, call us at 0808.234.7359 (United Kingdom) or 614-447-3700 (worldwide) or visit www.cas.org/SCIFINDER.
Scientists commenting on HTRF data (from a reader) during an assay development.

HTRF is a highly sensitive, robust technology for the detection of biomolecular interactions and is widely used by the pharmaceutical industry for the high throughput screening stage of drug development. The technology provides a comprehensive technological platform for GPCR screening and kinase screening.

Cisbio international’s IP-One Assay integrates and combines the company’s HTRF technology, allowing for GPCR screening in a high-throughput mode. IP-One incorporates d2, a novel small molecule organic dye developed and optimised by Cisbio and which was also introduced in three cAMP assays due to its advanced properties. This technology provides a technical platform for GPCR investigators to examine both GPCR pathways, and allows HTRF technology to be applied to all GPCR targets. The company has also released a number of specified and ready-to-use assays for the precise quantification of biomarkers such as cytokines, cortisol, PGE2 and most recently, insulin.

The company’s HTRF Toolbox Reagents are used for probing a wide variety of molecular interactions. In recent years, studies have proven the flexibility of this toolbox to address complex cellular mechanisms ranging from nuclear receptor activity to polyubiquitination, as well as heparanase or protease activity.

Cisbio’s HTRF Kinase Toolbox Reagents represent a powerful technology for kinase screening. All HTRF kinase assays use a flexible assay format and allow miniaturisation to 384 low volume or 1536 well formats, and are built around a common cassette system related to the affinity system reagent or the anti-tag toolboxes.

The cassette system comprises the specific anti-phosphoepitope antibody labeled with Eu³⁺ cryptate on one side and on the other, an XL665 conjugate such as Sa-XL⁺⁺ or anti-GST-XL665, available from the company’s affinity system reagent or anti-tag toolboxes, respectively. The HTRF kinase toolbox consists of Eu³⁺-cryptate labeled antibodies for studying both serine/threonine and tyrosine kinases.

APPLICATIONS OF HTRF TECHNOLOGY

HTRF is a highly sensitive, robust technology for the detection of biomolecular interactions and is widely used by the pharmaceutical industry for the high throughput screening stage of drug development. The technology provides a comprehensive technological platform for GPCR screening and kinase screening.

Cisbio international’s IP-One Assay integrates and combines the company’s HTRF technology, allowing for GPCR screening in a high-throughput mode. IP-One incorporates d2, a novel small molecule organic dye developed and optimised by Cisbio and which was also introduced in three cAMP assays due to its advanced properties. This technology provides a technical platform for GPCR investigators to examine both GPCR pathways, and allows HTRF technology to be applied to all GPCR targets. The company has also released a number of specified and ready-to-use assays for the precise quantification of biomarkers such as cytokines, cortisol, PGE2 and most recently, insulin.

The company’s HTRF Toolbox Reagents are used for probing a wide variety of molecular interactions. In recent years, studies have proven the flexibility of this toolbox to address complex cellular mechanisms ranging from nuclear receptor activity to polyubiquitination, as well as heparanase or protease activity.

Cisbio’s HTRF Kinase Toolbox Reagents represent a powerful technology for kinase screening. All HTRF kinase assays use a flexible assay format and allow miniaturisation to 384 low volume or 1536 well formats, and are built around a common cassette system related to the affinity system reagent or the anti-tag toolboxes.

The cassette system comprises the specific anti-phosphoepitope antibody labeled with Eu³⁺ cryptate on one side and on the other, an XL665 conjugate such as Sa-XL⁺⁺ or anti-GST-XL665, available from the company’s affinity system reagent or anti-tag toolboxes, respectively. The HTRF kinase toolbox consists of Eu³⁺-cryptate labeled antibodies for studying both serine/threonine and tyrosine kinases.

Complementary assay system

Last month, Cisbio international released its second IP-One assay, IP-One ELISA, complementing the IP-One HTRF assay to create a portfolio of fundamental assays for IP1 (inositol(1)phosphate) quantification and GPCR screening accessible to all laboratories.

IP-One ELISA is a monoclonal antibody-based assay that can easily detect IP1, one of the major products of the phosphatidyl inositol cascade, which tightly correlates with Gq-coupled activity. IP-One ELISA delivers second messenger measurement and represents a way of precisely investigating molecular events occurring at the membrane level. The new kit is an adaptation of the IP-One HTRF to the ELISA detection method.

“Cisbio international continues its commitment to R&D innovation in the field of GPCR screening, and IP-One ELISA is yet another example of this initiative,” says Degorce. “It was important for us to enable a larger customer base, whose resources might not allow for investment in compatible laboratory equipment, to also benefit from IP-One technology.”

Novel organic dye

In September of last year, the company launched three new cyclic AMP (cAMP) assays that incorporate d2, a novel small molecule organic dye developed by Cisbio to optimise assay performance and stability when measuring GPCR activation. The upgraded cAMP dynamic 2 and cAMP femto 2 assays, as well as the cAMP HiRange assay, take into account the variability of customers’ biological material and cover a wide range of cAMP concentration. The cAMP dynamic 2 assay is the kit of reference, suitable for most applications, cAMP femto 2 is the most sensitive of the three, and cAMP HiRange is used when the target has high level of expression.

“First introduced in the IP-One Assay, the d2 acceptor molecule has the same photophysical properties as XL665 - the current HTRF acceptor,” says Degorce. “It brings additional benefits to the assays, including a straightforward immunochemistry and negligible compound interference.

Results show extreme consistency and are highly stable over time, so plates can be read for days afterwards, and the assays offer high miniaturisation capabilities. The introduction of the d2-based cAMP assays creates a GPCR screening synergy for Cisbio’s current customers that requires no additional technical resources or know-how.

“The development of the d2-based cAMP assays is testimony to Cisbio’s dedication to new products, as well as to innovative research and development initiatives,” he adds. “d2 is the fruit of our technological research involved in improving HTRF technology for the benefit of our customers, and this acceptor is the cement of all of our assays: after cAMP and IP-One, d2 performance should also benefit other assays in the HTRF product line.”

FURTHER INFORMATION

Cisbio international
In Vitro Technologies
HTRF® / Bioassays
BP 84175
30204 Bagnols/Cèze Cedex
France
Tel: +33 4 66 79 67 05
Fax: +33 4 66 79 19 20
Web: www.htrf.com
Quanta BioDesign, Ltd.

Leading Innovator and Producer of Monodisperse dPEG™s

New Tools for Your Drug Discovery Needs!

Use our dPEG™s as direct solutions to your solubility, non-specific binding, immunogenicity and issues with precise size control!

Try our Maleimide-dPEG™, NHS esters!

...Amino acid derivatives ...Methoxy derivatives

QuantaBioDesign.com

Fax Your Orders to (614) 760-9781

Chromatide

Purification Peptide Synthesis Oligonucleotide Synthesis

Chromatide offers custom purification services including method development and technical transfer.

A comprehensive peptide and oligonucleotide synthesis services is available.

Due to an extensive knowledge in process scale operations gained from over 25 years in the industry we can also offer consultancy services in our specific areas of expertise.

We offer novel and unique polymer supports for the solid phase synthesis of peptides, oligonucleotides, and for use in combinatorial chemistry.

Reprints

Reprints of your feature article provides your company with cost effective corporate or product promotion. Use them for direct mail, hand-outs at exhibitions and conferences.

Tom Mulligan
sp³ magazine, avakado Limited,
Global House,
13 Market Square,
Horsham,
West Sussex, RH12 1EU, UK.

Tel: +44 (0)1403 220760
Fax: +44 (0)1403 220761
E-mail: tom@sp2.uk.com

For further information
The Heath Business and Technical Park
Runcorn,
Cheshire, UK
WA7 4QX

T: +44 (0) 1928 511 222
F: +44 (0) 1928 511 224
E: info@chromatide.com
W: www.chromatide.com