激光显微细胞分离技术[创新技巧]

【字体: 时间:2002年04月04日 来源:

编辑推荐:

  

    在基础医学研究中涉及越来越多的如某一疾病状态组织中,多种基因或遗传变化,区别发展中的组织细胞群以及疾病状态组织细胞,将有助于了解疾病发生的分子机制。因此,在下一代的分子分析方法将需要进入微观世界及自动化程度高。对某一特殊个体的切片进行遗传指纹图谱鉴定,将有助于诊断及指导治疗。

    然而,即使是最经典、可靠的检测方法,也不可避免混杂多种状态细胞中DNA、RNA或蛋白质分子的干扰,因此,需要发展组织显微分离技术,以解决从混合细胞型组织中分离某单一群的细胞。最开始,研究者从冰冻的组织块中粗略地挖取富含某一类细胞类群的组织,或用激光破坏手工墨水标记的不需要部分,或手工工具针或刀机械地去除或刮取相应的组织。上述几种方法在操作过程中繁琐,不够精确,效率不能适应常规的临床分子诊断方法。为了解决上述问题,美国国立健康研究院肿瘤研究所病理研究室与生物医学设备组合作研发激光俘获显微切割技术,发展为Acturus 的PixCell II系统。在操作这套系统时,首先在组织切片上覆盖一层透明的膜,在显微镜下观察该组织切片,选择某一特殊细胞后,开启脉冲式红外激光束,使膜融化变得粘性很强(该膜的成份为 Ethylene Vinyl Acetate Polymer),等到冷却后将该位置的细胞牢固地粘附在上面从而分离细胞。

    该种方法较以往方法改进之处:首先,它简单,不需要移动任何切片部位,一步即可完成从组织中分离特殊细胞,这些在膜上的细胞依然保持其原有的形态,使用无菌、一次性的膜可最大限度地避免可能的污染。这对于后续进行PCR检测是尤为重要的。其次,使膜活化所需的激光能量很小(<50mW),与常规显微配合是充足的,完全能够满足临床病理组织细胞显微分离的需要。再者,LCM技术分离细胞速度较以往方法有很大提高,例如,从肾组织切片中分离一个肾小球(Glomerulus)所需时间小于10秒,一小时内即可轻松地分离上百个肾小球。手工分离方法远远不能达到该速度。由于组织切片固定,操作者可以反过来确定所分离的细胞是正确的靶细胞。而手工机械显微分离可能会引起周围其它细胞一块松动,污染靶细胞。

    一个新技术及伴随新技术诞生的仪器会对科学研究产生重要的影响。在NATURE MEDICINE • VOLUME 5 • NUMBER 1:117-112 • JANUARY 1999 的研究论文中,作者将 LCM、 RNA扩增和基因芯片三种技术的整合到分子神经生物学研究中,研究涉及一个神经组织:背根神经节(DRG).DRG位于脊髓两边,很小,大鼠的DRG只有1/3大米粒大.脑内和DRG有类似功能的组织是三叉神经节.DRG中有两类神经元:大神经元和小神经元.取这些组织有两个目的:可能提取总RNA,可能制备总蛋白进行WESTERN来研究某些蛋白的表达情况或磷酸化状态.提取总RNA是为了利用DD-PCR技术研究正常大鼠和接受伤害性刺激的大鼠的DRG的基因表达差异,筛选参与伤害性刺激相关基因,包括新基因和已知基因的新功能.目前认为DRG中与伤害性刺激有关的神经元是小神经元.研究者的苦恼是不能分别取出DRG中的大小神经元来进行研究。另一个困难是由于DRG很小, 所以为了提取足够使用的RNA,不得不杀大量大鼠,有时一次就杀上百只。而且从大鼠取DRG也不是一件容易的解剖技术.还有一个困难就是DD-PCR要接触同位素,即在进行DD-PCR反应时加入同位素标记的dATP或dCTP,这样得到的PCR产物就标记上了同位素.产物进行PAGE,电泳后干胶仪器干胶.干胶曝X光片, 曝光后的X光片和胶对好位置,从胶中回收感兴趣的DNA片段。鉴于这些困难研究者们想到:要是能把大小神经元分开该多好,要是能把RNA扩增该多好,要是做DD-PCR时能不用同位素该多好.如今看来,这些难题似乎可以迎刃而解了。即利用LCM技术取出感兴趣的细胞,利用Epicentre Ampliscribe T7 Transcription Kit把有限量组织中提出的有限量RNA扩增;进行DD-PCR反应时用红外荧光染料标记(的引物)技术取代同位素标记技术,经Odyssey Infrared Imaging System检测和定位,从而可以从胶中回收希望回收的片段。这个回收方案同样可以用于AFLP研究者回收他们感兴趣的DNA片段。

    当前,在生命科学领域,和基因组学及蛋白组学一样热门的是神经科学,而且神经科学在国内外都正在成为最具挑战性和最具诱惑力的科学。因此,在国内外从事神经科学研究的科技工作者越来越多,国家对神经科学的资助也越来越大。神经系统由外周神经系统和中枢神经系统组成,中枢神经系统包括脑和脊髓.神经系统主要由两类细胞组成:神经元和胶质细胞.在脑内,不同解剖区域行使不同功能,解剖区域是指核团。核团在显微镜下才可以辨别,是相对集中在一个区域的可能行使一定功能的神经元和胶质细胞的集合体。所以在以前,把某个核团从脑内取出来是不太现实的。脑内核团数以百计,如果要想研究基因在脑内核团的表达水平, 在以前只能用原位杂交技术。如果要想研究蛋白质的表达水平或磷酸化状态,只能用免疫组织化学技术。而这两个技术虽然能精确定位基因或蛋白质在脑内核团的表达水平,缺点是通量小。如果研究者主要是为了研究很多种基因在特定核团的神经元或胶质细胞的表达情况,解决方案就是组合LCM技术、RNA扩增技术和基因芯片技术。即利用LCM技术将特定核团的神经元或胶质细胞取出,提取总RNA或mRNA,RNA反转录为cDNA并进行扩增.最后将cDNA标记为探针,和基因芯片杂交。如果研究的基因种类数不多,那么可以只提取总RNA,利用定量RT-PCR技术来进行。
 

订阅生物通快讯

订阅快讯:

最新文章

限时促销

会展信息

关注订阅号/掌握最新资讯

今日动态 | 人才市场 | 新技术专栏 | 中国科学人 | 云展台 | BioHot | 云讲堂直播 | 会展中心 | 特价专栏 | 技术快讯 | 免费试用

版权所有 生物通

Copyright© eBiotrade.com, All Rights Reserved

联系信箱:

粤ICP备09063491号