探秘“试管”中的进化 人造生命即将要诞生

【字体: 时间:2009年05月25日 来源:环球科学

编辑推荐:

  成长中的生命:RNA复制分子组成的枝杈从DNA主干处水平发散开来。这样的RNA可以在试管中向我们展示出进化的一些基本特征。然而,对于人造生命而言,它们还需要进化出崭新功能的能力。

  成长中的生命:RNA复制分子组成的枝杈从DNA主干处水平发散开来。这样的RNA可以在试管中向我们展示出进化的一些基本特征。然而,对于人造生命而言,它们还需要进化出崭新功能的能力。

  杰勒德·F·乔伊斯(Gerald  F.  Joyce)承认,在看到这些实验结果的时候,他有一种冲动,想要暂停进一步研究,立即把这些结果发表出去。经过多年努力,他和他的学生特蕾西·林肯(Tracey  Lincoln)终于发现了一对虽然短小但功能强大的RNA序列,把它们和一堆结构更简单的RNA“原料”混在一起,前者的数量会不断倍增,几小时内就能扩增至原来的10倍,而且只要有充足的原料和空间,这种扩增过程就不会停止。

  但是乔伊斯对此并不完全满意。这位53岁的分子化学家是美国加利福尼亚州拉霍亚市斯克里普斯研究所(Scripps  Research  Institute)的教授兼所长,也是“RNA世界”(RNA  world)假说的提出者兼拥护者之一。今天我们所知的生命主要基于DNA和酶类蛋白质,在绝大多数情况下,RNA不过是传递遗传信息的信使。RNA世界假说则认为,现有生命是从一个更简单的前生命化学系统进化而来的,这个系统主要、甚至完全建立在RNA之上。当然,这个想法要说得通,RNA本身就必须能够支撑进化。乔伊斯认为,或许他合成的RNA有助于证实这种可能性。因此他和林肯又多花了一年时间来研究这些分子,在它们的序列上制造种种突变,并且建立起只有适者才能生存的竞争环境。

  2009年1月,就在达尔文诞生200周年前一个月,他们在《科学》杂志上公布了研究结果。他们的微型试管系统确实表现出了达尔文进化的几乎所有本质特征。实验伊始,有24个RNA变体进行自我复制,其中一些变体在实验环境中的复制速度比其他变体更快。所有RNA分子都共享同一个“原料”池,因此每一种分子都要和其他分子竞争。复制过程并不完美,因此新的变体很快就会出现,甚至繁荣兴盛——乔伊斯把这些突变称为重组体(recombinant)。

  “我们让这一过程持续进行了100个小时,”乔伊斯回忆道,“最后观察到复制分子的总数扩增了1023倍。最初那几十种复制分子很快就消失了,重组体开始接管整个群落。”不过,没有一种重组体进化出了它们的祖先所不具备的新功能。

  缺少了这关键的一环,人工进化就无法完全重现真正的达尔文进化。“这还算不上生命,”乔伊斯强调说,“生命能够在进化中‘开创’出全新的功能,我们还没有做到这一点。我们的目标是在实验室中制造生命,但是要实现它,我们就必须增加整个系统的复杂性,足以使它们进化出新的功能,而不只是对早已存在的旧有功能进行优化。”

  这一目标显然有可能实现,因为乔伊斯实验室中的RNA复制分子相对简单:每个分子仅拥有两个可以变化的基因样片段(genelike  section)。每一个这样的“基因”都是一段短小的RNA原料。一个复制分子就是一个RNA酶,能够把两个“基因”集结并连接起来,产生一个新的微型酶,也就是这个复制分子本体的“配体”。配体被释放后,也会集结两个不受束缚的“基因”,组装后产生一个与本体相同的克隆体。如果配体不忠实于本体,把本来并不匹配的两个“基因”连接在一起,就会产生重组体。不过,这样的重组体确实无法创造出新的“基因”。如果能够营造出一个更复杂的系统,或者给每个复制分子增加更多的“基因”来增加复杂性,创造新的基因或许有可能实现。

  美国伊利诺伊大学研究DNA酶的化学家斯科特·K·西尔弗曼(Scott  K.  Silverman)希望:“在新的分子中捕获到达尔文进化的踪迹,我们或许能更好地理解生物进化的一些基本原则。”分子水平上的生物进化在某种程度上依旧是个不解之谜。乔伊斯与林肯就在实验的事后检验时发现,三类最成功的重组体已经形成了一个“派系”。派系中的任何一个成员出现复制错误,产生的新重组体都会是派系中另外两个成员当中的一员。

  乔伊斯表示,在实验室中创造生命的下一个重大步骤,就是改造(或进化)出一系列合成分子,以便在复制的同时还能行使新陈代谢的作用。哈佛大学医学院的遗传学家杰克·W·绍斯塔克(Jack  W.  Szostak)已经开发出一种与ATP结合的无机蛋白,而ATP这种携带能量的化学物质对新陈代谢至关重要。绍斯塔克的实验室还在尝试制造原生细胞(protocell),也就是把RNA包裹进一种被称为胶团(micelle)的脂肪酸小球,这种小球能够自发地形成、合并及复制。

  尽管生物学家在想方设法用RNA和其他基本物质拼凑成某种形式的人造生命,但这种人工营造的系统可能一开始就过于复杂,很难证明40亿年前自然生命也是由类似的方式产生的。乔伊斯指出,尽管他的复制分子只包含50个化学“字母”,但是随机出现这么一条序列的几率只有大约1/1030。“如果复制分子的长度能够缩短到6个‘字母’,哪怕缩到10个‘字母’,我才会说我们或许找对了方向,因为按照人们的设想,这样的分子才会(在原始有机物质汤中)自发形成。”(译/冯志华校/虞骏)



  从试管生命到诊断工具

  在实验室中创造出生命,对人类来说是一个重大事件。尽管与《弗兰肯斯坦》中的科学怪人相比,目前的研究更局限于分子水平,但是这些结果还有不少更加实际的用途。乔伊斯在一篇即将发表于《自然·生物技术》的论文当中,描述了他的实验室如何改变RNA复制分子,使它们具备了自我复制的生化功能。他认为,进化竞赛的领跑者会是医学诊断的良好候选分子。伊利诺伊大学的西尔弗曼认为,这是一个绝佳的创意:“假设你现在要在一个包含众多不同化学物质的‘肮脏’环境下进行检测工作,比如说在花生酱中找到沙门氏菌(Salmonella)。如果不进行提纯,这样的检测很难进行。如果能够‘进化’出一套诊断系统,在如此‘嘈杂’的环境下仍然可以检测到‘信号’,那就会大有用处。”

相关新闻
生物通微信公众号
微信
新浪微博
  • 搜索
  • 国际
  • 国内
  • 人物
  • 产业
  • 热点
  • 科普
  • 急聘职位
  • 高薪职位

知名企业招聘

热点排行

    今日动态 | 人才市场 | 新技术专栏 | 中国科学人 | 云展台 | BioHot | 云讲堂直播 | 会展中心 | 特价专栏 | 技术快讯 | 免费试用

    版权所有 生物通

    Copyright© eBiotrade.com, All Rights Reserved

    联系信箱:

    粤ICP备09063491号