用户名:

密 码:

测序 | miRNA | 表观遗传 | 蛋白研究 | 细胞研究 | 免疫学 | 转染 | PCR | qPCR | 核酸纯化 | 基因表达

您所在的位置:首页 > 新技术专栏

千年基因外显子组测序技术手册

外显子组测序

【字体: www.ebiotrade.com 时间:2013年04月15日 来源:千年基因

摘要:

  外显子组的序列仅占全基因组序列的1%左右,但大多数与疾病相关的变异位于外显子区。通过外显子组测序可鉴定约8万个变异,全基因组测序可鉴定300万个变异,因此,与全基因组测序相比,外显子组测序不仅费用较低,数据阐释也更为简单。外显子组测序技术以其经济、有效的优势广泛应用于孟德尔遗传病、罕见综合征及复杂疾病的研究,并于2010年被Science杂志评为十大突破之一。

分享到:
  

一、技术简介

随着社会生活水平的提高,人类健康问题也越来越多的受到社会各界的关注。传统的遗传疾病研究模式是采用显带分析、核型分析、FISH、遗传标记、PCR-DNA测序等传统试验方法来寻找与疾病相关的DNA变异,这些方法各有各的特点,但都存在工作量大、效率低、分辨率低等一系列的限制。新一代高通量测序技术的出现,为遗传疾病的研究提供了全新的思路。

2009年,基因组定向捕获工具的出现使外显子组测序成为可能。2009年9月,第一篇关于外显子组测序的原理验证文章于Nature杂志上发表。来自华盛顿大学的Jay Shendure通过对四名Freeman-Sheldon综合征患者的外显子组测序,找到了已知的致病基因MYH3。随后,该团队将这种技术应用于米勒综合征的研究,通过对患者编码区序列的捕获及深度测序,鉴定出单个候选基因DHODH,并经Sanger测序验证其他患者中存在该基因的突变。

外显子组的序列仅占全基因组序列的1%左右,但大多数与疾病相关的变异位于外显子区。通过外显子组测序可鉴定约8万个变异,全基因组测序可鉴定300万个变异,因此,与全基因组测序相比,外显子组测序不仅费用较低,数据阐释也更为简单。外显子组测序技术以其经济、有效的优势广泛应用于孟德尔遗传病、罕见综合征及复杂疾病的研究,并于2010年被Science杂志评为十大突破之一。近两年外显子组研究相关的SCI文章已发表千余篇,已对数百种疾病展开了深入研究,研究结果推动了人类医学的研究。

二、技术优势

• 直接对蛋白编码序列进行序列测定,找出影响蛋白结构的变异。
• 高深度测序,可发现常见变异及频率低于1%的罕见变异。
• 针对外显子组区域测序,约占基因组的1%,有效降低费用、周期、工作量。

三、应用举例

疾病

遗传模式

致病基因

Freeman-Sheldon综合征

AD

MYH3

Kabuki 综合征

AD

MLL2

Schinzel-Giedion 综合征

AR

SETBP1

Sensenbrenner 综合征

AR

WDR35

Fowler 综合征

AR

FLVCR2

Perrault 综合征

AR

HSD17B4

Hajdu-Cheney 综合征

AD

NOTCH2

成骨不全

AR

SERPINF1

米勒综合征

AR

DHODH

Brown-Vialetto-van Laere 综合征

AR

C20orf54

血磷酸脂酶过多智力迟钝综合征

AR

PIGV

家族性β-脂蛋白过少血症

AD

ANGPTL3

色素性视网膜炎

AR

DHDDS

非综合征性耳聋

AR

GPSM2

原发性淋巴管性水肿

AD

GJC2

肌萎缩性侧索硬化

AD

VCP

非综合征的智力迟钝

AR

TECR

Van Den Ende-Gupta 综合征

AR

SCARF2

自身免疫性淋巴组织增生症(ALPS)

AR

FADD

小脑共济失调

AD

TGM6

逆向性痤疮

AD

NCSTN

四、方案设计

相比传统测序,外显子测序能够迅速的获得所有外显子区域的遗传信息,在大幅提升效率的同时显著降低了研究成本;相比全基因组测序,外显子测序能够在缩短实验周期、减少数据分析量及实验投入的基础上有针对性的得到大部分全基因组测序所能得到的信息。基于外显子组测序良好性价比,该方法目前在国际上已经被广泛的应用于遗传病和癌症研究中。

1. 单基因疾病研究方案

首先需要按照疾病表型对家系成员进行严格筛查,明确其患病情况并进行该疾病研究的背景调查。在找出该疾病已经有一些研究背景和相关的致病基因报道,可通过传统PCR测序方法对已知的疾病相关变异进行验证和初筛;确认所研究的样本中未发现相关的基因变异,那么可以挑选一个或数个相同疾病家系的核心成员成员进行外显子组测序。每个家系中的患病个体选取3-5个样本,正常个体选取1-2名作为对照进行研究。按照疾病模型(AD,AR等)及样品的家系信息对测序得到的结果进行分析,缩小候选变异的范围,经过多种注释、筛选后过滤掉对功能无影响的变异及公共数据库中的常见变异,再使用传统PCR测序进行样本扩大化验证及相关的功能研究,最终确定疾病相关变异。

单基因遗传病研究举例:

a. 家系图:


 
b. 分析思路:
1). 隐性纯合突变致病:两个患者共享相同的纯合突变,父母为杂合携带者。
2). 复合杂合突变致病:两个患者具有相同的突变,即在一个基因内有两个不同的杂合变异,而父母分别为这两个杂合突变的携带者。
3). 显性模式(新生突变):找两个患者共有的杂合突变,而父母不带有该突变。

c. 分析结果示意:

若样本为散发样本,由于样本间没有血缘关系,遗传背景相差较大,测序得到的结果也较难分析。为了更为准确的得到有价值的结果,使用散发样本进行外显子组测序要求的样本数目比家系样本要多一些。一般建议至少做30个患病个体样本以上的平行测序分析。对大量患病个体的测序数据进行多样本分析,从而确定候选疾病相关变异,再用传统PCR测序在其他的相同疾病患病个体和正常人群中做进一步验证。

2. 复杂疾病及癌症的研究方案

对于复杂疾病,首先应该选择具有遗传性较高的病例作为研究对象,一般需要满足以下几个特点:a. 与疾病相关;b. 高度遗传;c. 在患者中表现较早,表型一致,高外显率;d. 疾病的发病机制相似。整体的研究思路一般是通过适量样本的外显子测序(患病和健康个体各50例)找到与疾病高度关联的低频突变,然后根据这一结果订制合适的芯片,在大样本里进行大规模验证。从而获得精确度更高的疾病相关变异位点。接着可以针对这些位点进行生物学功能研究,从而得到有意义的结果,开发出疾病诊断及治疗的相关产品等。


 
在各种环境因素的作用下,机体某些体细胞染色体上发生的变异破坏或改变了某些重要的生物学过程,体细胞可能会因此异常增生而转变为肿瘤细胞。由于肿瘤细胞具有异质性,同一块肿瘤组织里可能含有不同时期的肿瘤细胞以及正常体细胞,因此它的基因变异情况相对其遗传疾病来说更为复杂。对于肿瘤组织的外显子组测序研究,其最关键的步骤在于样本的选取。目前最常见的情况是分别取同一癌症患者的癌组织和癌旁组织进行比较,样本数目建议至少20对以上。测序后成对的样本进行分析后再进行不同病人间的多样本分析,以此来发掘肿瘤相关的基因变异。由于肿瘤产生的原因包括基因突变,基因表达水平变异,表观遗传变异等多个方面,在利用NGS研究肿瘤的时候,通常会使用多种试验方法相结合的方法,例如转录组测序、全基因组测序、甲基化测序等,相互进行印证,多数据整合分析可以进一步的提高数据的可靠性,提升科研文章档次。

了解千年基因外显子组测序服务的更多信息

上一页 [1] [2] [3] 下一页

我来说两句(0)

[Ctrl+Enter]

加载读者评论......

相关文章:

    加载相关文章......

今日文章:

    加载今日文章......
    加载中......
    加载中......

技术期刊

GE期刊 | 基因快讯

    加载中......
    加载中......

更多>>

技术大讲堂

分子 | 细胞 | 蛋白 | 其它

    加载中......
    加载中......
    加载中......
    加载中......

更多>>

特价专栏

    加载中......

更多>>

会展信息

    加载中......

更多>>

生物通首页 | 生物通首页 | 今日动态 | 生物通商城 | 人才市场 | 核心刊物 | 特价专栏 | 生物直通车 | 科研交流 | 正牌代理商 | 中国科学人 | 新技术专栏 | 技术讲座

版权所有 生物通

Copyright© 2000-2011 eBiotrade.com, All Rights Reserved

联系信箱:

粤ICP备09063491号