中国学者发表Nature Methods综述:表观转录组分析新技术

【字体: 时间:2017年01月03日 来源:生物通

编辑推荐:

  12月29日的Nature Methods杂志公布了2016年度技术:Epitranscriptome analysis(表观转录组分析),来自北京大学生命科学学院的伊成器研究员受邀发表了题为“Epitranscriptome sequencing technologies: decoding RNA modifications”的综述,介绍了真核生物mRNA上已知的几种主要修饰的检测技术,并对目前表观转录组分析技术存在的挑战及未来的发展方向进行了展望。

  生物通报道:12月29日的Nature Methods杂志公布了2016年度技术:Epitranscriptome analysis(表观转录组分析),来自北京大学生命科学学院的伊成器研究员受邀发表了题为“Epitranscriptome sequencing technologies: decoding RNA modifications”的综述,介绍了真核生物mRNA上已知的几种主要修饰的检测技术,并对目前表观转录组分析技术存在的挑战及未来的发展方向进行了展望。

伊成器早年毕业于中国科学技术大学化学系,2012年入选“青年****”,今年荣获了国家自然科学基金委优秀青年科学基金项目。其研究组主要致力于DNA/RNA修饰及去修饰的生物学通路、功能和机制研究。去年这一研究组也在Nature Methods发文,报道了一种通过化学标记和富集手段,首次实现了免亚硫酸氢盐处理(bisulfite-free)的5-醛基胞嘧啶(5fC)单碱基分辨率、全基因组水平测序。

表观转录组学(epitranscriptomics,又称“RNA表观遗传学”)是近年来兴起的前沿科研领域。目前已知的转录后修饰已有一百多种,并且这当中许多修饰都能够参与真核生物基因表达的调控。在表观转录组学的研究当中,RNA修饰全转录组水平检测技术的发展至关重要。

在这篇综述中,伊成器等人对于真核生物mRNA上已知的几种主要修饰(包括N6-methyladenosine,N6,2’-O-dimethyladenosine, 5-methylcytidine, 5-hydroxylmethylcytidine, inosine, pseudouridine andN1-methyladenosine)的检测技术进行了综述,探讨了用于描述这些表观转录组标记的测序技术,比如规模,分辨率,定量特征,预富集能力和相应的生物信息学工具。同时也针对不同检测技术和RNA生物学新方法进行了选择指导,最后对目前表观转录组分析技术存在的挑战及未来的发展方向进行了展望。

本期Nature Methods的主要内容围绕年度技术:表观转录组分析(Epitranscriptome analysis),详情见:2016年的年度技术是什么?Nature Methods最新公布。其中也提及了伊成器研究组在该领域发表的两项化学生物学新技术。其中一篇是报道了一种通过化学标记和富集手段实现全转录组水平上假尿嘧啶RNA修饰的单碱基分辨率测序技术CeU-Seq,并绘制了人和小鼠细胞转录组中假尿嘧啶RNA修饰的谱图。

研究人员为了研究哺乳动物转录组中的假尿嘧啶修饰,首先利用高分辨质谱对mRNA中的假尿嘧啶修饰进行定量,发现其广泛存在于各种细胞系及小鼠的组织当中,并且在哺乳动物mRNA中丰度相当高。该研究继而通过化学生物学、高通量测序等手段,发展了“CeU-Seq”—一种利用小分子化合物实现特异性标记与富集的假尿嘧啶高通量测序技术。利用这一技术,该研究成功实现了人细胞系以及小鼠(大脑与肝脏组织)全转录组水平的单碱基分辨率假尿嘧啶检测,发现在数千个mRNA与长非编码RNA(lncRNA)上都含有假尿嘧啶修饰。

这项研究进一步确定了多个可以作用于mRNA上的假尿嘧啶合成酶(其中PUS1、DKC1两种酶之前被发现与线粒体肌病、先天性角化不良等人类疾病相关),并且发现转录组中假尿嘧啶的含量与分布均会受到各种环境刺激的调控,呈现出“刺激条件特异性”的诱导修饰。因此,该研究不但揭示了假尿嘧啶的广泛存在、绘制了转录组中假尿嘧啶RNA修饰的高清谱图,也为这一转录后修饰参与基因表达调控的研究提供了重要工具、为近年来兴起的“RNA表观遗传学”领域提供了新的研究方向。

作者简介:

伊成器
国家自然科学基金委优秀青年科学基金项目,2016
绿叶生物医药杰出青年学者奖,北京大学,2014
“青年****”(第二批)入选者,2012
IUPAC Prize for Young Chemists , 2011
Chemistry Alumni Graduate Fellowship , 2009

科研领域
    实验室致力于DNA/RNA修饰及去修饰的生物学通路、功能和机制研究。为了实现这一目标,我们综合运用包括化学生物学、表观遗传学、核酸化学、细胞生物学、生物化学、基因组学和结构生物学等多学科手段,旨在揭示核酸表观遗传修饰的新颖功能和调控机制。
1. RNA修饰和表观转录组学
    几十年的研究已经鉴定了100多种转录后修饰。研究人员之前认为,一旦RNA修饰产生,这些共价修饰都是稳定存在、不可逆转的。然而,最近关于6-甲基腺嘌呤(m6A)的一系列研究证明,RNA甲基化也是动态可逆的,并且在基因表达调控中起到重要作用。因此,“表观转录组学”也随之兴起。
除了m6A,转录组上还存在其它表观遗传修饰。我们课题组最近的研究发现,两种之前认为只在非编码RNA上存在的转录后修饰,即假尿嘧啶(Ψ)和1-甲基腺嘌呤(m1A),也广泛存在于哺乳动物的mRNA当中。我们的研究表明这些转录后修饰在转录组中广泛存在,受多种外界刺激的动态调控,并且对于m1A来说,可以被潜在的“eraser”消码器蛋白去甲基化。然而,mRNA上m1A和Ψ修饰的生物学功能还尚不清楚。我们希望利用课题组已经开发的新颖表观转录组测序技术,来阐释这些RNA修饰的功能和调控机制,从而在表观转录组学这个新兴起的学科中发现一片“新大陆”。
2. 依赖于TET和TDG的DNA主动去甲基化
    哺乳动物基因组主动去甲基化的新模式,包括了基于TET蛋白(ten-eleven translocation)对5-甲基胞嘧啶(5mC)进行氧化、并产生5-羟甲基胞嘧啶(5hmC)、5-醛基胞嘧啶(5fC)和5-羧基胞嘧啶(5caC),5fC与5caC可在TDG糖基化酶的作用下完成去甲基化。除了作为DNA主动去甲基化的中间产物,这些5mC的氧化衍生物也具有生物学功能。近期证据表明5hmC作为一种稳定的表观遗传修饰,与很多生物学进程和多种疾病密切相关。5fC和5caC是5hmC的进一步氧化产物,在基因组的多个重要区域(例如启动子区与远端调控因子区)积累。我们实验室最近建立了一种全新的5fC全基因组测序技术(cyclization-enabled C-to-T transition of 5fC,fC-CET),这是一种不依赖于亚硫酸氢盐测序的单碱基分辨率5fC测序方法。我们将继续建立精准灵敏的5mC氧化衍生物测序技术,尤其是能应用于单细胞测序和临床研究的技术,来解析这些DNA表观遗传修饰的生物学功能。

3. DNA损伤修复及蛋白质-DNA相互作用
    DNA上的异常修饰可能会导致细胞毒性或基因组的不稳定。因此,基因组DNA一旦出现损伤就需要及时被修复。生物体在进化过程中,产生了一系列高效的DNA损伤修复机制;我们通过课题组掌握的一种新颖化学交联技术,对其中碱基切除修复和直接修复两种机制中进行研究。例如,我们最近发表的一项工作揭示了人类DNA糖基化酶NEIL1一种新颖的修复机制:即基于底物异构化的高效识别和修复机制。在这一研究方向中,我们通过整合化学合成、结构生物学、生物化学与生物物理学等多种技术,来研究修复蛋白与核酸的相互作用。

原文检索:

Epitranscriptome sequencing technologies: decoding RNA modifications

In recent years, major breakthroughs in RNA-modification-mediated regulation of gene expression have been made, leading to the emerging field of epitranscriptomics.Our understanding of the distribution, regulation and function of these dynamic RNA modifications is based on sequencing technologies. In this Review, we focus on the major mRNA modifications in the transcriptome of eukaryotic cells: N6-methyladenosine, N6, 2′-O-dimethyladenosine, 5-methylcytidine, 5-hydroxylmethylcytidine, inosine, pseudouridine and N1-methyladenosine. We discuss the sequencing technologies used to profile these epitranscriptomic marks, including scale, resolution, quantitative feature, pre-enrichment capability and the corresponding bioinformatics tools. We also discuss the challenges of epitranscriptome profiling and highlight the prospect of future detection tools. We aim to guide the choice of different detection methods and inspire new ideas in RNA biology.

相关新闻
生物通微信公众号
微信
新浪微博
  • 搜索
  • 国际
  • 国内
  • 人物
  • 产业
  • 热点
  • 科普
  • 急聘职位
  • 高薪职位

知名企业招聘

热点排行

    今日动态 | 人才市场 | 新技术专栏 | 中国科学人 | 云展台 | BioHot | 云讲堂直播 | 会展中心 | 特价专栏 | 技术快讯 | 免费试用

    版权所有 生物通

    Copyright© eBiotrade.com, All Rights Reserved

    联系信箱:

    粤ICP备09063491号