“百千万人才工程”教授最新Neuron文章:活体双光子成像

【字体: 时间:2017年02月21日 来源:生物通

编辑推荐:

  一直以来科学家们都希望能了解我们人体在清醒状态下的大脑活动规律,但要实现这一点并不容易,近期来自北京大学生命科学学院的研究人员在在清醒猴认知行为条件下,最终实现了稳定时间超过6个月的双光子成像,这无疑为神经科学研究带来了新希望。

  

生物通报道:一直以来科学家们都希望能了解我们人体在清醒状态下的大脑活动规律,但要实现这一点并不容易,近期来自北京大学生命科学学院的研究人员在在清醒猴认知行为条件下,最终实现了稳定时间超过6个月的双光子成像,这无疑为神经科学研究带来了新希望。

这一研究成果在线公布在2月16日的Neuron杂志上,文章的通讯作者是北京大学生命科学学院和麦戈文脑科学研究所唐世明研究员,第一作者为北京大学生命科学中心2014级博士生李明。唐世明早年毕业于北航,曾获第九届中国青年科技奖,入选新世纪“百千万人才工程”国家级人选等。研究组主要研究方向是采用电极阵列、光学成像、分子生化、双光子等研究技术,分析包括视觉皮层在内的复杂神经线路,研究视觉系统如何同时产生形状识别的选择性和不变性。

实时观测大脑中发生的活动,有助于科学家了解我们大脑运作的规律,找到治疗疾病的新方法。传统的成像方法需要停止组织的细胞活动,而双光子成像技术,能以单细胞至单突触分辨率,观察脑皮层大量神经元活动,近年来在神经科学领域获得广泛应用。

猕猴在认知行为、脑结构及功能方面都接近于人类,是人类脑疾病、视觉认知及其他高级认知功能研究理想的模式动物。由于大动物存在脑表面组织增生严重、脑组织跳动大、基因编码探针的表达效率低等困难,清醒猴长时期的双光子成像一直未能实现,成为该领域研究的一个技术瓶颈。

在这篇文章中,研究人员通过在猴视觉皮层显微注射腺相关病毒(AAV),转入基因编码探针,实现了清醒猴长时期双光子成像。新设计的成像窗口能有效防止颅内感染及硬脑膜增生,保持长达数月的稳定光学质量。AAV介导的基因编码探针,包括钙探针GCaMP5和GCaMP6s ,可以在猴视觉皮层获得长时期高效和稳定的表达。通过改进头部固定装置以及图像移动修正,获得了稳定的图像和高质量的神经活动信号,最终在清醒猴认知行为条件下,实现了稳定时间超过6个月的双光子成像。

这项还首次实现了在清醒猴双光子成像下,同时进行神经元胞内记录及单细胞电转等电生理研究及操作,证明了钙探针信号与神经元活动大范围的线性关系(10Hz - 150Hz),并能实现猴脑皮层神经元稀疏转染和树突成像。

双光子显微镜在实验生物学中正变得越来越有必要。其应用范围包括追踪细胞和亚细胞的运动,监控稀有事件,并记录小型结构的高速信号。神经元树突和树突棘很小,而神经电生理信号又很快,如膜电位或离子浓度的瞬变,这使得这些结构的功能研究必须使用高时空分辨率的记录方法。

在这方面,传统的双光子显微镜,再加上对生理参数敏感的荧光指示剂,只提供了部分解决方案,带来了近衍射极限的空间分辨率。这是因为传统的双光子显微镜使用相对较慢的束扫描方法,它严重限制了功能数据可被记录的程度。而现代高速双光子成像系统的发展越来越快,已经在多个研究领域中取得了进展。

作者简介:

唐世明

教育经历

1996 - 1998 , 工学博士 , 机器人 , 北京航空航天大学机电工程系机器人学
1994 - 1996 , 工学硕士 , 人工智能 , 北京航空航天大学自动控制系智能控制专业
1990 - 1994 , 工学学士 , 宇航工程 , 北京航空航天大学宇航工程系

工作经历

2011 - 至今 , 研究员、博士生导师 ,北京大学生命科学学院
2008 - 2011 , 研究员、博士生导师、985首席专家 , 北京师范大学脑与认知科学研究院
2004 - 2009 , 研究员、博士生导师 , 中国科学院生物物理所
2001 - 2004 , 副研究员、博士生导师 , 中国科学院生物物理所
1999 - 2001 , 助理研究员 , 中国科学院神经科学研究所
1998 - 1999 , 助理研究员 , 中国科学院生物物理所


荣誉奖励

获第九届中国青年科技奖 , 2006
入选新世纪“百千万人才工程”国家级人选 , 2006
获国务院政府特殊津贴 , 2005
研究成果入选“2005科学发展报告”(共10项突破性成果) , 2005
获国家杰出青年科学基金 , 2005
研究成果“果蝇的视觉不变性”入选2004年中国科学家十大发现 , 2004
“科学中国人2004年度人物” , 2004
航空工业部科技二等奖 , 1999
“北航十杰”第一名 , 1996
航空工业部科技一等奖 , 1995
“NHK创意对抗”国际机器人大赛最佳创意奖 , 1995
首届“中国大学生跨世纪发展奖学金”特等奖,第一名(全国10名) , 1995


科研领域描述

研究背景:脑认知与人工智能
  如果你想要理解大脑认知的原理、想要突破人工智能,或者说想要构建一个物理系统,使之能像大脑一样感知和思考,应该从哪里入手呢?
  广义上讲,大脑是一个计算系统,它大概是由不太复杂但数量庞大的计算单元(神经元)组成的。虽然在发育关键期,外部刺激对大脑神经网络布线有重要影响,但外部刺激和学习记忆应该不是决定性的因素。通过复杂的刺激训练,并不能使一个规模庞大、但结构简单的神经网络自动产生多少智能。事实上,亿万年缓慢的生物演化,使大脑具有复杂的网络初值,这应该才是智能的关键。如果我们还没有能力设计出一种比自然演化更高效的算法,自动搜索出智能系统,也没有足够高的智慧或者足够好的运气,直接设定智能系统的初值,那么,从神经生理层面,研究真实大脑的神经线路,将是值得考虑的做法。

视觉认知
  最初级的智能起始于感觉系统,人脑信息输入有超过80%来自视觉,脑认知的内部运作也主要基于视觉概念。视觉认知主要功能是识别,另一个则是空间定位,这对应于生理学上的What和Where通路。视觉系统的智能体现在视觉不变性,偏离注视点或者大小不同的同一个客体,均能被视觉系统准确快速地识别,而这些视觉客体在视网膜甚至是初级视皮层上的激活区都发生了很大的变化,这也是理解视觉识别的最大障碍之一。知觉不变性对应了思维的基本元素——概念,进而也是大脑构建知识系统及产生智能的基石,就像是底层的操作系统和汇编语言,虽然艰涩难懂,但却是最终理解脑认知不能回避的问题。

研究方向
  1960年代Hubel和Wiesel的发现或许已经解答了一条简单的线段是如何被识别出来的,即:对于可能出现在各个位置的、不同朝向的线段,大脑都预制了对应的检测细胞。这种简单策略在识别稍微复杂的图形的时候就会遇到困难,我们或许可以设想大脑预制了针对两条线段组合的细胞,那么三条线段或者更为复杂的图形又该怎么办呢?不幸的是,现实中的图形大多都比线段复杂,识别轮廓中局部线段的朝向,那只是个开始。真正的挑战在于,视觉系统是如何利用这些分散的朝向信息,识别出一个完整的图形。
  我们研究那些比bar稍微复杂一点的图形,例如一条比bar长一点的线段,是如何被大脑识别出来的,进而了解视觉认知最基本的原理。为此,我们建立了先进的视觉认知行为和神经生理学实验平台,采用电极阵列、光学成像、分子生化、双光子等研究技术,探测视觉皮层复杂的神经线路,研究视觉系统如何同时产生形状识别的选择性和不变性。

原文摘要:

Long-Term Two-Photon Imaging in Awake Macaque Monkey

Habenula (Hb) plays critical roles in emotion-related behaviors through integrating inputs mainly from the limbic system and basal ganglia. However, Hb also receives inputs from multiple sensory modalities. The function and underlying neural circuit of Hb sensory inputs remain unknown. Using larval zebrafish, we found that left dorsal Hb (dHb, a homolog of mammalian medial Hb) mediates light-preference behavior by receiving visual inputs from a specific subset of retinal ganglion cells (RGCs) through eminentia thalami (EmT). Loss- and gain-of-function manipulations showed that left, but not right, dHb activities, which encode environmental illuminance, are necessary and sufficient for light-preference behavior. At circuit level, left dHb neurons receive excitatory monosynaptic inputs from bilateral EmT, and EmT neurons are contacted mainly by sustained ON-type RGCs at the arborization field 4 of retinorecipient brain areas. Our findings discover a previously unidentified asymmetrical visual pathway to left Hb and its function in mediating light-preference behavior.

相关新闻
生物通微信公众号
微信
新浪微博
  • 搜索
  • 国际
  • 国内
  • 人物
  • 产业
  • 热点
  • 科普
  • 急聘职位
  • 高薪职位

知名企业招聘

热点排行

    今日动态 | 人才市场 | 新技术专栏 | 中国科学人 | 云展台 | BioHot | 云讲堂直播 | 会展中心 | 特价专栏 | 技术快讯 | 免费试用

    版权所有 生物通

    Copyright© eBiotrade.com, All Rights Reserved

    联系信箱:

    粤ICP备09063491号