浙江大学今日发表两篇Science文章:发现关键蛋白的奥秘

【字体: 时间:2019年10月25日 来源:生物通

编辑推荐:

  

  

10月25日,浙江大学在Science杂志上发表两项重要成果:“Cryo-EM structures of the human cation-chloride cotransporter KCC1”和“Palmitoylation of NOD1 and NOD2 is required for bacterial sensing”,分别解析了人源钾-氯共转运蛋白KCC1的2.9埃的高分辨率冷冻电镜结构,以及NLR家族的两个重要受体蛋白NOD1和NOD2的作用机制。

在第一篇文章中,浙江大学医学院郭江涛课题组解析了这类蛋白质中的一个成员——人源钾-氯共转运蛋白KCC1的2.9埃的高分辨率冷冻电镜结构,揭示了钾离子和氯离子的结合位点,提出一个钾-氯共转运机理的模型,这将为相关的疾病治疗和药物设计提供新的视角。

人体细胞内的钾、钠、氯等离子稳态是受到严格调控的,离子稳态一旦失衡,就会导致高血压、抑郁、癫痫等一系列疾病。而在细胞膜上,有一类被称为阳离子-氯离子共转运蛋白的蛋白质,可以带着离子进入和离开细胞,从而有效调控细胞内的离子稳态。不过长期以来,由于缺乏精确的结构信息,人们对这类蛋白的工作机理还不甚了解。

在这篇文章中,浙江大学医学院刘斯博士、冷冻电镜中心常圣海博士和物理系硕士生韩斌铭等人经过大量的蛋白表达和纯化条件的优化,最终获得足够量的可用于冷冻电镜数据收集的KCC1蛋白样品。

为了减少电子对蛋白的辐射损伤,蛋白样品需要在冷冻环境下进行数据收集。在数据收集前,科研人员用液态乙烷把蛋白溶液样品快速冷冻在一张“铜网”上。铜网的每个目下面是一个方格,里面有几百个通透的孔,蛋白颗粒就被玻璃态的冰层包裹在这些孔中。但是,问题又来了,一般的冰层厚度在100-200纳米之间,而KCC1蛋白的直径在8-10个纳米之间,就好像要在十几米深的泳池里寻找1米长的目标,噪音很大。

为了提高分辨率,刘斯和常圣海先是“削薄”冰层,然后再不断调整参数,让冷冻后的KCC1蛋白颗粒能够密集而均匀地分布在冰层较薄的区域。这样不仅可以显著降低冰层的噪音,提高分辨率,而且可以增加每张照片的蛋白颗粒数量,提高数据收集效率。

电镜数据收集的过程,有点像电影的拍摄手法:在8秒的时间内连续拍摄40张照片,形成一个“微电影”。科研人员通过图像处理,将微电影“叠加”成一张照片,这样可以显著提高照片的信噪比,获得更为清晰的画面。课题组从3000多部“微电影”中,挑出了一两百万个蛋白颗粒进行数据处理。经过层层筛选,最终用十万个左右的高质量的蛋白颗粒进行高分辨率三维重构。

课题组最终获得了两套2.9埃高分辨率的KCC1的三维结构。 “这项工作首先得益于近年来的冷冻电镜技术的发展;刘斯和常圣海在蛋白样品制备和数据收集处理方面的经验和决心是课题取得进展的关键因素。”郭江涛这样评价道。

分析了KCC1的高分辨率三维结构后,研究人员发现KCC1是以二聚体的形式存在,它的跨膜区与胞外区均参与了二聚体的形成。在KCC1结构中,研究人员鉴定出一个钾离子和两个氯离子的结合位点;结合离子转运实验、分子动力学模拟、结构比较等方法,该研究阐明了KCC1以1:1的比例同时同向转运钾离子和氯离子的分子机理。

第二篇文章中,浙江大学医学院基础医学系Dante Neculai教授团队研究发现,NLR家族的两个重要受体蛋白NOD1和NOD2能够在棕榈酰转移酶ZDHHC5的作用下发生棕榈酰化修饰,从而介导细菌性炎症信号通路的发生。这一发现有效地连接起科学机理与临床问题,未来在诊断和治疗上或有重要价值。

NOD1和NOD2是炎症性肠病(IBD)的先天性免疫的重要识别受体,作为“哨兵”的模式识别受体,它们各有各的岗位,有的在“城墙”上工作,有的在“城墙”内工作。

很长一段时间,科研人员认为NOD1和NOD2蛋白这两个“哨兵”主要在“城墙”以内的细胞质中工作,通过侦探“敌情”,进而释放炎症因子招募下游的白细胞的吞噬病原菌或者修复受损部位,恢复细胞结构。

随着研究的发展,科学家们发现NOD1和NOD2蛋白不仅在“防火墙”以内,而且还贴着“防火墙”工作。然而NOD1和NOD2蛋白缺乏结合膜结构域,天然与细胞膜 “磁场不合”,那它们为什么却能在这里防守呢?科学家们一直在寻找其中的奥秘。

Dante Neculai团队的科研人员发现,NOD1和NOD2蛋白通过酯化修饰,把一个16碳的饱和脂肪酸连接到了细胞膜疏水层,这就好像一个“锚”把哨兵固定在城墙内侧。

科研人员顺着细菌进入细胞的两个线路去发掘线索,他们发现,不论是细菌直接入侵,还是通过内吞体间接进入细胞,都会发生棕榈酰化,让NOD1和NOD2带上“锚”,然而棕榈酰转移酶有24个成员,确定哪一个才是真正的目标靶点是工作的重要部分。

科研人员将与NOD1和NOD2有关的互作蛋白都查了一遍,寻找“究竟是谁给了武器”,通过绘制网络,目标聚焦在了ZDHHC5上。而且科研人员还发现,上膜和下膜还是一个循环的过程。ZDHHC5先从细胞中拿到“锚”,然后再转移到NOD1和NOD2身上。当有外敌入侵时,会有更多催化信号。

Dante Neculai教授的团队采用新的蛋白互作质谱联用法(BioID),酰基生物素置换法(ABE)及荧光素酶报告系统,基因敲除鼠等手段,发现NOD1和NOD2的棕榈酰化修饰是影响其亚细胞定位及正确免疫应答功能的关键因素,并鉴定了NOD1和NOD2棕榈酰化的发生位点及相应的棕榈酰转移ZDHHC5。ZDHHC5 主要定位于细胞质膜,NOD1、NOD2能够在此被棕榈酰化从而定位于质膜。

另外,在沙门氏菌的侵袭下,ZDHHC5 能够被招募于含病原菌的内体膜,从而吸引并修饰胞质内更多 NOD1/2,使其定位于内体膜。各种 SLC 家族的转运蛋白将病原菌细胞壁中的肽聚糖组分转运至细胞质中(如 MDP, DAP),棕榈酰化修饰的 NOD1和NOD2能够识别并诱发细胞内NOD1和NOD2介导的免疫应答,从而促使入侵者被自噬降解及宿主细胞炎症因子的释放。

原文标题:

Cryo-EM structures of the human cation-chloride cotransporter KCC1

Palmitoylation of NOD1 and NOD2 is required for bacterial sensing

(生物通)



相关新闻
生物通微信公众号
微信
新浪微博
  • 搜索
  • 国际
  • 国内
  • 人物
  • 产业
  • 热点
  • 科普
  • 急聘职位
  • 高薪职位

知名企业招聘

热点排行

    今日动态 | 人才市场 | 新技术专栏 | 中国科学人 | 云展台 | BioHot | 云讲堂直播 | 会展中心 | 特价专栏 | 技术快讯 | 免费试用

    版权所有 生物通

    Copyright© eBiotrade.com, All Rights Reserved

    联系信箱:

    粤ICP备09063491号