Cell杂志最受关注的五篇文章(11月)

【字体: 时间:2019年11月21日 来源:生物通

编辑推荐:

  常规的CAR-T技术需要改造一种免疫细胞形式,也就是细胞毒性T细胞,使其在表面表达抗体。抗体部分可使细胞毒性T细胞驻留在靶细胞(例如白血病细胞)中,并对其进行攻击和破坏。但是,对于每种新的病原体或癌细胞,必须制造出新的常规CAR-T细胞,产生新的靶向抗体,这非常耗时且昂贵。

  

生物通报道:Cell创刊于1974年,现已成为世界自然科学研究领域最著名的期刊之一,并陆续发行了十几种姊妹刊,在各自专业领域里均占据着举足轻重的地位。Cell以发表具有重要意义的原创性科研报告为主,许多生命科学领域最重要的发现都发表在Cell上。本月《Cell》前五名下载论文为:

Attacking Latent HIV with convertibleCAR cells, a Highly Adaptable Killing Platform

Gladstone研究所和Xyphos Biosciences合作的一项研究表明,基于CAR-T细胞免疫疗法的一项新技术在在多个治疗领域显示出巨大的希望,尤其是在抗击HIV方面,这种技术可缩小接受抗逆转录病毒治疗的患者体内持续存在的感染细胞的储存库。

抗逆转录病毒疗法(ART)可以抑制HIV感染,但不能从宿主中清除病毒。一些病毒藏匿在细胞内部,形成了所谓的潜在艾滋病毒库。艾滋病毒可以在患者中断治疗后,从这种储存库藏身处中立即重新开始致命感染,迫使患者终生需要抗病毒治疗。

潜在的储存库是治愈HIV/AIDS的主要障碍,Gladstone研究所的Warner C. Greene博士一直希望能靶向它,清除病毒,Greene博士是Gladstone 研究所HIV治愈研究中心主任,也是这篇文章的通讯作者。研究表明,储存库越大,控制就越困难,并且病毒在治疗失败后反弹的速度也就越快。

“我们的工作重点是缩小潜在的储存库,并设计能够控制较小储存库的免疫反应,从而终止抗逆转录病毒疗法。这种‘减少和控制策略’有助于艾滋病毒的持续缓解或功能性治愈”,Greene博士说。

常规的CAR-T技术需要改造一种免疫细胞形式,也就是细胞毒性T细胞,使其在表面表达抗体。抗体部分可使细胞毒性T细胞驻留在靶细胞(例如白血病细胞)中,并对其进行攻击和破坏。但是,对于每种新的病原体或癌细胞,必须制造出新的常规CAR-T细胞,产生新的靶向抗体,这非常耗时且昂贵。

相比之下,convertibleCAR技术使细胞毒性“杀手” T细胞与任意数量的抗体结合成为可能。这对于抵抗诸如HIV之类的病原体至关重要,因为像是HIV存在数百种不同的变体。

“这种灵活的技术有可能彻底改变CAR-T系统,科学家们可以一次性将convertibleCAR细胞递送给患者,从中医生施用最适合治疗患者疾病的抗体或抗体混合物。”Greene说。

Landscape and Dynamics of Single Immune Cells in Hepatocellular Carcinoma

北京大学生物医学前沿创新中心(BIOPIC)、生命科学学院、北京未来基因诊断高精尖创新中心(ICG)张泽民课题组联合首都医科大学附属北京世纪坛医院彭吉润课题组以及德国药企勃林格殷格翰公司多位科学家,在国际期刊Cell上发表研究论文,结合10x Genomics和SMART-seq2两种单细胞RNA测序技术,对肝癌患者多个组织的免疫细胞做出了系统性的刻画,分析了免疫细胞动态迁移和状态转化的特征,探索了它们在肝癌治疗上的潜在价值。

Atoms to phenotypes: Molecular design principles of cellular energy metabolism

在一项最新研究中,科学家模拟了能为有机体产生能量的光合细菌中光收集结构的每个原子,研究人员报告说,模拟的细胞器行为与自然中的细胞器相似。这项工作迈出了解生物结构如何将阳光转化为化学能(对生命至关重要的一种生物创新)的重要一步。

这一研究发现公布在11月14日的Cell杂志上。

这项研究最初是由伊利诺伊大学生物物理学教授Klaus Schulten领导,Schulten是磁感应,动物迁徙和生物导航等研究领域的天才学者,他于2016年过逝,但这项研究在之后仍然继续着,最新研究成果部分实现了Schulten数十年来梦寐以求的梦想——发现原子级相互作用,模拟生命系统机制。

文章的另外一位作者,贝克曼先进科学技术研究所的Melih Sener说,Schulten在他职业生涯的很早时期就决定研究光合系统。Schulten 和 Sener对色素细胞(chromatophore)进行建模,这是一种原始的光合作用细胞器,它以ATP的分子形式产生化学能。

Schulten是一位物理学家,他想从物理学的角度理解生物学。但是后来他意识到生物学只有在将所有复杂性都纳入模型后才能起作用。而做到这一点的唯一方法是使用超级计算机。

多年来,Schulten在伊利诺伊州和其他地方招募了合作者,帮助他应对挑战。这一团队构建了一个1.36亿个原子的色素细胞模型,需要四年的大量超级计算机功能。最终这项工作是在田纳西州橡树岭国家实验室的Titan和Summit,以及Blue Waters等超级计算机上完成的。

Schulten和他的同事们已经对色素细胞的许多单个蛋白质和脂质成分进行了分子模拟。

伊利诺伊大学教授Aleksei Aksimentiev在Schulten死后接替了该项目的指导工作,他说,弄清系统的工作原理需要将所有零件放在一起,这意味着用科学上可用的每种工具解剖色素细胞,从实验室到电子显微镜,再到编程创新,将计算挑战分解为可管理的步骤。

Active and Repressed Chromatin Domains Exhibit Distinct Nucleosome Segregation during DNA Replication

一项最新研究发现,不仅是DNA的遗传信息,而且包装DNA的蛋白质的遗传信息,在细胞繁殖时也能帮助其维持遗传身份特征。

纽约大学医学院的研究人员领导的这项研究,他们揭示了每个细胞将其身份传递给下一代细胞的过程,也就是在发育过程中一分为二的繁殖过程。研究人员说,所有细胞都具有相同的,完整的DNA信息,但是每个细胞都经过编程,激活或沉默某些基因,从而确定它们的身份,比如是变为心脏细胞而不是肠细胞。

研究团队发现,只有在紧密的沉默染色质中,负责化学修饰组蛋白尾巴的蛋白质才能识别(“读”)亲本核小体中的修饰,然后在新形成的核小体上复制(“写”)它们。

这项研究还表明,沉默的染色质中形成核小体的组蛋白可能被新型伴侣蛋白护送到复制DNA的适当位置,研究人员目前正在寻找这种蛋白。

文章通讯作者Danny Reinberg说:“显然,通过基因抑制,组蛋白修饰可以显示出可遗传的基因调控系统,而这种基因调控系统不存在于细菌等更多原始细胞中,而是在更大复杂性的人类细胞中发挥作用。与此同时,在某些情况下,癌症是由于这种非常复杂的现象而产生的,由于组蛋白化学修饰的丢失,随机失去致密性的细胞会出现通常沉默的基因变得活跃。”

Reinberg说:“通过这种方式,癌细胞进化突变后,对各种治疗方法产生了抗性,我们希望目前的工作将为阻止这种情况提供新的方法。”

The piRNA Response to Retroviral Invasion of the Koala Genome

麻省大学医学院和澳大利亚昆士兰大学的研究人员进行的一项新研究在考拉身上发现了一种前所未有的动物免疫应答类型。

这些科学家本来是专注于席卷澳大利亚考拉种群的逆转录病毒KoRV-A研究,结果意外的发现了考拉采用了一种新颖的基因防御系统,抵抗逆转录病毒的感染。这种新颖的遗传反应控制了考拉种系中病毒的产生,这是一种以前未曾描述过的机制,可与哺乳动物众所周知的先天免疫应答相提并论,并且这一发现为脊椎动物的遗传进化,以及与入侵逆转录病毒之间的相互作用提供了新的思路。

这一研究发现公布在Cell杂志上。研究人员指出种系的逆转录病毒感染在进化过程中已发生过很多次,但在世代时间尺度上却很少见。
(生物通)



相关新闻
生物通微信公众号
微信
新浪微博
  • 搜索
  • 国际
  • 国内
  • 人物
  • 产业
  • 热点
  • 科普
  • 急聘职位
  • 高薪职位

知名企业招聘

热点排行

    今日动态 | 人才市场 | 新技术专栏 | 中国科学人 | 云展台 | BioHot | 云讲堂直播 | 会展中心 | 特价专栏 | 技术快讯 | 免费试用

    版权所有 生物通

    Copyright© eBiotrade.com, All Rights Reserved

    联系信箱:

    粤ICP备09063491号