人类基因组科学家《Nature》公布“超大”基因组图谱

【字体: 时间:2009年09月14日 来源:生物通

编辑推荐:

  生物通报道,Broad Institute,俄亥俄州立大学,瑞典Uppsala大学,荷兰Wageningen大学,英国爱丁堡大学,英国Warwick大学等科学家组成的国际研究团队最近在Nature上发布马铃薯晚疫病细菌基因组序列结果Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans。

  

生物通报道,Broad Institute,俄亥俄州立大学,瑞典Uppsala大学,荷兰Wageningen大学,英国爱丁堡大学,英国Warwick大学等科学家组成的国际研究团队最近在Nature上发布马铃薯晚疫病细菌基因组序列结果Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans

 

文章通讯作者分别是Broad InstituteChad Nusbaum博士和俄亥俄州立大学的Sophien Kamoun博士,两位是主要负责人。Chad Nusbaum博士曾是人类基因组计划和小鼠基因组计划的参与科学家,擅长于测序技术和基因图谱绘制;Sophien Kamoun博士主要从事植物病原学方面的研究。

 

臭名昭著晚疫病细菌是爱尔兰大饥荒的始作俑者,与同类生物相比,该细菌有大得出奇的基因图谱,其中74%都是由重复出现的“转位子”组成。这是一个“疯狂”的比例,通常微生物基因图谱中有25%的“转位子”就已经很多了。“转位子”是具有特定功能的基因片段,它可以自我复制并在基因序列中四处移动,晚疫病病菌正是靠这些“转位子”的作用侵害马铃薯。研究人员认为,晚疫病病菌基因如此演化是为了保持一个庞大的“武器库”,便于迅速适应环境变化。

 

据新华网消息,一名马铃薯育种专家在评论上述成果时说,有时“好不容易费15年时间培育出一种有抵抗力的新品种,晚疫病病菌却只用几年就把它打败”,现在掌握了该病菌的基因图谱和“武器库”特点,将有助于研发能有效对付它的基因手段。

 

晚疫病细菌会损害马铃薯的叶子和根茎,它在19世纪导致爱尔兰大面积马铃薯绝收,约有100万人因此死亡,还有数百万人因这一病虫害移居海外。据估算,这一病菌目前仍给全球农业造成每年约67亿美元的损失。

生物通推荐原文检索

Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans

Brian J. Haas1,35, Sophien Kamoun2,3,35, Michael C. Zody1,4, Rays H. Y. Jiang1,5, Robert E. Handsaker1, Liliana M. Cano2, Manfred Grabherr1, Chinnappa D. Kodira1,36, Sylvain Raffaele2, Trudy Torto-Alalibo3,36, Tolga O. Bozkurt2, Audrey M. V. Ah-Fong6, Lucia Alvarado1, Vicky L. Anderson7, Miles R. Armstrong8, Anna Avrova8, Laura Baxter9, Jim Beynon9, Petra C. Boevink8, Stephanie R. Bollmann10, Jorunn I. B. Bos3, Vincent Bulone11, Guohong Cai12, Cahid Cakir3, James C. Carrington13, Megan Chawner14, Lucio Conti15, Stefano Costanzo16, Richard Ewan15, Noah Fahlgren13, Michael A. Fischbach17, Johanna Fugelstad11, Eleanor M. Gilroy8, Sante Gnerre1, Pamela J. Green18, Laura J. Grenville-Briggs7, John Griffith14, Niklaus J. Grünwald10, Karolyn Horn14, Neil R. Horner7, Chia-Hui Hu19, Edgar Huitema3, Dong-Hoon Jeong18, Alexandra M. E. Jones2, Jonathan D. G. Jones2, Richard W. Jones20, Elinor K. Karlsson1, Sridhara G. Kunjeti21, Kurt Lamour22, Zhenyu Liu3, LiJun Ma1, Daniel MacLean2, Marcus C. Chibucos23, Hayes McDonald24, Jessica McWalters14, Harold J. G. Meijer5, William Morgan25, Paul F. Morris26, Carol A. Munro27, Keith O'Neill1,36, Manuel Ospina-Giraldo14, Andrés Pinzón28, Leighton Pritchard8, Bernard Ramsahoye29, Qinghu Ren30, Silvia Restrepo28, Sourav Roy6, Ari Sadanandom15, Alon Savidor31, Sebastian Schornack2, David C. Schwartz32, Ulrike D. Schumann7, Ben Schwessinger2, Lauren Seyer14, Ted Sharpe1, Cristina Silvar2, Jing Song3, David J. Studholme2, Sean Sykes1, Marco Thines2,33, Peter J. I. van de Vondervoort5, Vipaporn Phuntumart26, Stephan Wawra7, Rob Weide5, Joe Win2, Carolyn Young3, Shiguo Zhou32, William Fry12, Blake C. Meyers18, Pieter van West7, Jean Ristaino19, Francine Govers5, Paul R. J. Birch34, Stephen C. Whisson8, Howard S. Judelson6 & Chad Nusbaum1

 

Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02141, USA

The Sainsbury Laboratory, Norwich NR4 7UH, UK

Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, Ohio 44691, USA

Department of Medical Biochemistry and Microbiology, Uppsala University, Box 597, Uppsala SE-751 24, Sweden

Laboratory of Phytopathology, Wageningen University, 1-6708 PB, Wageningen, The Netherlands

Department of Plant Pathology and Microbiology, University of California, Riverside, California 92521, USA ……

University of Aberdeen, Aberdeen Oomycete Laboratory, College of Life Sciences and Medicine, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK

Plant Pathology Programme, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK

University of Warwick, Wellesbourne, Warwick CV35 9EF, UK

Horticultural Crops Research Laboratory, USDA Agricultural Research Service, Corvallis, Oregon 97330, USA

Royal Institute of Technology (KTH), School of Biotechnology, AlbaNova University Centre, Stockholm SE-10691, Sweden

Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New

 

 

Phytophthora infestans is the most destructive pathogen of potato and a model organism for the oomycetes, a distinct lineage of fungus-like eukaryotes that are related to organisms such as brown algae and diatoms. As the agent of the Irish potato famine in the mid-nineteenth century, P. infestans has had a tremendous effect on human history, resulting in famine and population displacement1. To this day, it affects world agriculture by causing the most destructive disease of potato, the fourth largest food crop and a critical alternative to the major cereal crops for feeding the world's population1. Current annual worldwide potato crop losses due to late blight are conservatively estimated at $6.7 billion2. Management of this devastating pathogen is challenged by its remarkable speed of adaptation to control strategies such as genetically resistant cultivars3, 4. Here we report the sequence of the P. infestans genome, which at 240 megabases (Mb) is by far the largest and most complex genome sequenced so far in the chromalveolates. Its expansion results from a proliferation of repetitive DNA accounting for 74% of the genome. Comparison with two other Phytophthora genomes showed rapid turnover and extensive expansion of specific families of secreted disease effector proteins, including many genes that are induced during infection or are predicted to have activities that alter host physiology. These fast-evolving effector genes are localized to highly dynamic and expanded regions of the P. infestans genome. This probably plays a crucial part in the rapid adaptability of the pathogen to host plants and underpins its evolutionary potential.

相关新闻
生物通微信公众号
微信
新浪微博
  • 搜索
  • 国际
  • 国内
  • 人物
  • 产业
  • 热点
  • 科普
  • 急聘职位
  • 高薪职位

知名企业招聘

热点排行

    今日动态 | 生物通商城 | 人才市场 | 核心刊物 | 特价专栏 | 仪器云展台 | 免费试用 | 今日视角 | 新技术专栏 | 技术讲座 | 技术期刊 | 会展中心 | 中国科学人 | 正牌代理商

    版权所有 生物通

    Copyright© eBiotrade.com, All Rights Reserved

    联系信箱:

    粤ICP备09063491号