
-
生物通官微
陪你抓住生命科技
跳动的脉搏
Cell:染色质调控因子组合图谱
【字体: 大 中 小 】 时间:2011年12月28日 来源:生物通
编辑推荐:
近日来自美国哈佛-麻省理工的博德研究所、霍华德• 休斯医学研究所、麻省总医院和哈佛医学院等机构的研究人员在新研究中利用一种新技术揭示了染色质调控蛋白以特异性组合的方式参与调控染色质的结构和活性的机制。相关研究论文于12月23日发表在《细胞》(Cell)杂志上。
生物通报道 近日来自美国哈佛-麻省理工的博德研究所、霍华德• 休斯医学研究所、麻省总医院和哈佛医学院等机构的研究人员在新研究中利用一种新技术揭示了染色质调控蛋白以特异性组合的方式参与调控染色质的结构和活性的机制。相关研究论文于12月23日发表在《细胞》(Cell)杂志上。
领导这一研究的是来自麻省总医院和哈佛医学院病理学系副教授、博德研究所资深研究员Bradley Bernstein以及博德研究所核心成员、麻省理工学院副教授Aviv Regev。
“我们知道许多不同的染色质调控因子参与操纵了染色质的结构和活性,然而一直以来对于这些调控因子作用机制却并不是很清楚,”博德研究所表观基因组学项目负责人Charles Epstein解释说。
“我们希望能够找到一种途径来研究这些染色质调控因子的组合机制,”文章的共同第一作者、麻省总医院和博德研究所博士后研究员Alon Goren说。尽管过去的十年来,研究人员获得了大量关于组蛋白修饰及其对染色质影响的信息数据,在多种细胞类型中证实了组蛋白修饰对基因、蛋白质及酶的调控作用。然而对于这些因子和复合物是如何增加、消除及维持组蛋白修饰的机制仍知之甚少。Goren补充说:“新研究为我们提供了一种了解染色质调控的新的系统性的方法。”
在这篇文章中,研究人员开发出了一种称为“ChIP-string”的新技术,将常规的染色质分析技术“染色质免疫沉淀法”与研究基因表达Nanostring nCounter分析系统相结合。利用这一技术对两个不同细胞系中的染色质调控因子进行了全面筛查分析。“利用新技术,我们对两种不同人类细胞系中的30种染色质调控因子进行了研究,揭示了这些因子以一种高效组合的方式协同发挥功能。”
研究小组发现这些调控因子以特定的方式组合形成模块从而协同发挥功能。研究人员在癌细胞系中发现了6种不同的模块。在这些模块中,特异性的激活因子与抑制因子相互组合就像相互连接的齿轮一样协同发挥作用,从而表现出双功能特性。Goren 解释说:“我们在染色质的调控区域发现了这种模块化和双功能性特征,我们认为该机制有可能对细胞起着重要的微调控作用。”
在进一步的统计学数据分析中,研究人员发现一种调控因子实际上可参与组合多种不同的模块,差别只是其中一些组合力较强,而另一些较弱。“根据组合的不同,调控因子表现出不同的活性,”Goren说。
谈到下一步的计划,研究小组表示他们希望能根据染色质调控因子的活性分类来推测出组蛋白的修饰模式。利用RNAi技术,他们将进一步通过敲除染色质调控模块元件的方式研究这些因子的功能及影响。“这使得我们能够更深入地从功能上了解当某些特异的染色质调控因子功能受扰时将要发生的分子事件,”Epstein说。
(生物通:何嫱)
生物通推荐原文摘要:
Combinatorial Patterning of Chromatin Regulators Uncovered by Genome-wide Location Analysis in Human Cells
Hundreds of chromatin regulators (CRs) control chromatin structure and function by catalyzing and binding histone modifications, yet the rules governing these key processes remain obscure. Here, we present a systematic approach to infer CR function. We developed ChIP-string, a meso-scale assay that combines chromatin immunoprecipitation with a signature readout of 487 representative loci. We applied ChIP-string to screen 145 antibodies, thereby identifying effective reagents, which we used to map the genome-wide binding of 29 CRs in two cell types. We found that specific combinations of CRs colocalize in characteristic patterns at distinct chromatin environments, at genes of coherent functions, and at distal regulatory elements. When comparing between cell types, CRs redistribute to different loci but maintain their modular and combinatorial associations. Our work provides a multiplex method that substantially enhances the ability to monitor CR binding, presents a large resource of CR maps, and reveals common principles for combinatorial CR function.