Plant Cell:植物减数分裂重要机制

程祝宽研究组再发Plant Cell文章

【字体: 时间:2012年02月21日 来源:生物通

编辑推荐:

  来自中国科学院遗传与发育生物学研究所的研究人员发表了题为“Somatic and Reproductive Cell Development in Rice Anther Is Regulated by a Putative Glutaredoxin”的文章,在之前研究的基础上,进一步探明了植物雄性减数分裂起始的分子机制,这一成果公布在植物学权威期刊Plant Cell杂志上。

  

生物通报道:来自中国科学院遗传与发育生物学研究所的研究人员发表了题为“Somatic and Reproductive Cell Development in Rice Anther Is Regulated by a Putative Glutaredoxin”的文章,在之前研究的基础上,进一步探明了植物雄性减数分裂起始的分子机制,这一成果公布在植物学权威期刊Plant Cell杂志上。

领导这一研究的是遗传与发育生物学研究所基因组生物学研究中心程祝宽研究员,其早年毕业于扬州大学,目前主要从事植物减数分裂过程的遗传控制,水稻花器官发育及种子形成的分子机理等方面的研究。

有性生殖是自然界中最重要的生殖方式。生物体由无性生殖转变成有性生殖的重要标志是经过减数分裂产生生殖细胞。为保证有性生殖的正常进行,需要在特定时间和特定组织将细胞分裂周期从有丝分裂转变成减数分裂。

举一个简单的例子,动物在出生后的成长过程中细胞进行的是有丝分裂;而在性器官成熟产生精子和卵子时,细胞首先要进行一次减数分裂,因此减数分裂对有性生殖至关重要。

减数分裂起始是一个复杂的信号传递过程,在酵母及哺乳动物中有着不同的减数分裂起始机制,而在植物上如何实现由有丝分裂向减数分裂转变的机制尚不清楚。

去年这一研究组发现水稻中也存在shugoshin蛋白OsSGO1,揭示植物减数分裂过程中同源染色体分离的分子新机制,也揭示了植物界shugoshin蛋白在减数分裂前期I的特殊功能。

在这一新论文中,研究人员发现植物雄性生殖细胞的形成拥有其独特的减数分裂起始机制,花粉母细胞的正常发生受CC类谷氧还蛋白MIL1调控,MIL1基因突变导致花粉母细胞不能正常形成,从而不能进入减数分裂,对应细胞继续进行有丝分裂。该突变还影响内层花药壁细胞的分化,但不影响大孢子母细胞的形成与减数分裂进行。

这项研究探明植物雄性减数分裂起始的分子机制,而且还可以用于作物育种相关工作中,帮助构建人工智能不育系。

(生物通:万纹)

原文摘要:

Somatic and Reproductive Cell Development in Rice Anther Is Regulated by a Putative Glutaredoxin

The switch from mitosis to meiosis is one of the most pivotal events in eukaryotes undergoing sexual reproduction. However, the mechanisms orchestrating meiosis initiation remain elusive, particularly in plants. Flowering plants are heterosporous, with male and female spore genesis adopting different developmental courses. We show here that plant pollen mother cells contain a specific meiosis initiation machinery through characterization of a rice (Oryza sativa) gene, MICROSPORELESS1 (MIL1). The mil1 mutant does not produce microspores in anthers but has the normal female fertility. Detailed molecular and cytological investigations demonstrate that mil1 anthers are defective in the meiotic entry of sporogenous cell progenies and in the differentiation of surrounding somatic cell layers, resulting in locules filled with somatic cells instead of microspores. Furthermore, analysis of mil1 msp1 double mutants reveals that due to the absence of MIL1, the cells in their anther locule center do not activate meiotic cell cycle either, generating a similar anther phenotype to mil1. MIL1 encodes a plant-specific CC-type glutaredoxin, which could interact with TGA transcription factors. These results suggest meiotic entry in microsporocytes is directed by an anther-specific mechanism, which requires MIL1 activity, and redox regulation might play important roles in this process.

作者简介:
程祝宽
研究员,博士生导师。

1987年获扬州大学农学系农学学士,1990年获扬州大学农学系作物遗传育种硕士,1999年获中国科学院遗传研究所理学博士,1999年至2002年在美国Wisconsin-Madison大学从事博士后研究。2002年12月入选中国科学院“****”,终期考核为优秀。2003年获国家杰出青年基金资助,目前主持国家自然科学基金重点项目和科技部“863”及“973”课题。在Nature、Sciences、Nature Genetics、PNAS等国际刊物上发表论文30余篇。

主要研究内容包括:

1.植物减数分裂过程的遗传控制
减数分裂是配子形成过程中进行的一种特殊分裂方式,其特点是染色体复制一次,细胞分裂两次,形成了染色体数目减半的配子。雌雄配子受精形成合子,染色体又恢复到原来的数目。由于减数分裂过程来自父母双方染色体的充分重组和精确分离,在保证物种遗传物质相对稳定的基础上,为有性后代提供了极其丰富的多样性,这也正是借助有性杂交进行遗传选择的基础。减数分裂过程是一极其复杂的生命过程,涉及减数分裂的启动,同源染色体的配对、联会、交换和分离等一系列染色体的变化过程,这些过程受着许多基因的调控,一直成为生物科学研究的热点。我们以水稻作为模式生物,通过正向和反向两种途径,系统研究参与减数分裂过程的基因,了解这些它们的作用网络,为最终解析减数分裂调控的分子机理提供依据。

2.水稻花器官发育及种子形成的分子机理
花器官是植物特有的生殖器官,其遗传与发育受到许多基因的调控。水稻作为单子叶分子生物学研究的模式生物,其花器官与双子叶植物有着质的差别。我们以水稻为模式生物,通过诱发花器官变异的突变体,克隆相关基因,为深入了解单子叶生物花器官形成与发育的分子机理提供证据。

 

 

相关新闻
生物通微信公众号
微信
新浪微博
  • 搜索
  • 国际
  • 国内
  • 人物
  • 产业
  • 热点
  • 科普

热搜:减数分裂|MIL1|

  • 急聘职位
  • 高薪职位

知名企业招聘

热点排行

    今日动态 | 人才市场 | 新技术专栏 | 中国科学人 | 云展台 | BioHot | 云讲堂直播 | 会展中心 | 特价专栏 | 技术快讯 | 免费试用

    版权所有 生物通

    Copyright© eBiotrade.com, All Rights Reserved

    联系信箱:

    粤ICP备09063491号