颜宁研究组:人源葡萄糖转运蛋白GLUT1的结构及工作机理

【字体: 时间:2014年05月21日 来源:清华大学

编辑推荐:

  葡萄糖(D-glucose)是地球上包括从细菌到人类各种生物已知最重要、最基本的能量来源,也是人脑和神经系统最主要的供能物质;据估算,大脑平均每天消耗约120克葡萄糖,占人体葡萄糖总消耗量的一半以上。

  

2014年5月18日,清华大学医学院教授颜宁研究组在Nature在线发表了题为 “Crystal structure of the human glucose transporter GLUT1”的Article,在世界上首次报道了人源葡萄糖转运蛋白GLUT1的晶体结构,初步揭示其工作机制以及相关疾病的致病机理。

葡萄糖(D-glucose)是地球上包括从细菌到人类各种生物已知最重要、最基本的能量来源,也是人脑和神经系统最主要的供能物质;据估算,大脑平均每天消耗约120克葡萄糖,占人体葡萄糖总消耗量的一半以上。葡萄糖代谢的第一步就是进入细胞:亲水的葡萄糖不能自由穿透疏水的细胞膜,其进出细胞需要通过镶嵌于细胞膜上的葡萄糖转运蛋白完成。其中一类属于主要协同转运蛋白超家族(Major Facilitator Superfamily,简称MFS)的转运蛋白是大脑、神经系统、肌肉、红细胞等组织器官中最重要的葡萄糖转运蛋白(glucose transporters,简称GLUTs)。在人体的14个GLUTs中, GLUT1、2、3、4这四种蛋白生理功能最重要,研究最广泛,其中GLUT1因发现最早而得名。

GLUT1几乎存在于人体每一个细胞中,是红细胞和血脑屏障等上皮细胞的主要葡萄糖转运蛋白,对于维持血糖浓度的稳定和大脑供能起关键作用。在已知的人类遗传疾病中,导致GLUT1功能异常的突变会影响葡萄糖的正常吸收,导致大脑萎缩、智力低下、发育迟缓、癫痫等一系列疾病(GLUT1 Deficiency syndrome,又称De Vivo syndrome)。另一方面,当发生癌变时,葡萄糖是肿瘤细胞最主要的能量来源,但是肿瘤细胞由于缺乏氧气供应而只能对葡萄糖进行无氧代谢,同质量葡萄糖所提供的能量不到正常细胞的10%,因而对葡萄糖的需求剧增(这是被称为Warburg Effect的肿瘤细胞代谢现象),在很多种类的肿瘤细胞中都观察到GLUT1的超量表达,以大量摄入葡萄糖维持肿瘤细胞的生长扩增,这使得GLUT1的表达量可能作为检测癌变的一个指标。

葡萄糖跨膜转运的研究历史基本上代表了人类理解物质跨膜运输的历史。将近100年前,就观测到红细胞对葡萄糖的饱和性吸收;起初认为葡萄糖是通过自由跨膜扩散进入细胞的,随着实验证据的积累,1948年,LeFevre等首次提出葡萄糖的进入红细胞的跨膜扩散需要细胞膜上的特定组分(蛋白质)参与;1952年,Widdas等通过对人体红细胞转运葡萄糖的动力学研究提出了饱和运载体机制(saturable carrier mechanism),理论上揭示了细胞膜上运载体(carrier)的存在(尽管之后的研究并不再支持这转运模型,但至今许多跨膜转运蛋白仍然以carrier命名,转运蛋白家族以SLC分类);1977年,Kasahara和Hinkle从人体红细胞提纯分离出了参与葡萄糖转运的膜蛋白,并实现了脂质体重构功能实验,证实了葡萄糖转运蛋白的存在;1985年,Harvey Lodish实验室首次鉴定出了人体GLUT1蛋白的基因序列,并根据氨基酸序列预测了其具有12次跨膜区的拓扑结构;1991年,De Vivo等首次报道了与GLUT1突变体相关的疾病症状,并将这一大类与GLUT1突变相关的疾病命名为De Vivo 综合症,展示了GLUT1与人类健康的紧密关联。

自从获得了大量生理、病理、细胞、生化信息之后,获取GLUT1的三维结构就变成了该领域最期待的下一个突破。为了结构生物学研究,科学家尝试了从红细胞中、动物组织中直接提取GLUT1或者通过重组表达的方法获取;同时还尝试通过研究GLUT1-4的同源蛋白结构信息来间接理解这些重要的人源转运蛋白。上个世纪80年代,Henderson等报道了数个与GLUT具有序列同源性的细菌糖转运蛋白;90年代,一系列工作报道了GLUT1蛋白在多种表达体系中的重组表达;真正的结构生物学突破发生于2012年,颜宁研究组首次解析了GLUTs的大肠杆菌同源蛋白XylE与葡萄糖结合的高分辨率晶体结构,并利用同源建模预测了GLUT1-4的三维结构;时至今日,人源GLUT1蛋白的晶体结构的捕获为理解这个具有历史研究意义的转运蛋白掀开了新的一章。

颜宁研究组能够在激烈的国际竞争中率先解析GLUT1的晶体结构源于她们对于MFS家族的深入理解和研究积淀。颜宁的实验室在2007年成立之日就将GLUTs作为主要研究对象,然而作为结构生物学领域最为困难的膜蛋白、尤其是真核膜蛋白的研究,首先要培养一支研究队伍。因此她们从相对简单的细菌同源蛋白开始着手,边培养学生边积累经验教训,2010年解析了大肠杆菌中岩藻糖转运蛋白FucP的晶体结构(Dang et al, Nature, 2010),2012年解析木糖转运蛋白XylE的晶体结构(Sun et al, Nature, 2012)。在研究这些同家族糖转运蛋白的结构与机理过程中,她们对于MFS家族的工作机理有了深入了解,分析出GLUT1结晶的瓶颈在于高度动态、结构不稳定。针对这一问题,她们别出心裁,寻找可以将GLUT1锁定于某一构象的致病突变体,同时利用低温结晶进一步稳定蛋白构象,终于克服了GLUT1重组表达、纯化结晶的一系列技术障碍,获得了GLUT1的晶体结构。

GLUT1的三维晶体结构呈现经典的MFS家族折叠方式----12个跨膜螺旋组成N端和C端两个结构域。两个结构域之间的腔孔朝向胞内区,即该结构呈现向内开放构象。而在结晶中用到的去污剂头部恰好是葡萄糖苷,其结合位点与此前XylE中观测到的葡萄糖结合位点基本重合,证实了MFS家族具有单一结合位点。有趣的是,GLUT1在胞内可溶区还具有一个由4个α螺旋组成的结构域(简称ICH),这一序列只在MFS中的糖转运蛋白亚家族中(Sugar Porter subfamily)观察到,因此ICH是属于该家族蛋白的特有结构特征。

利用GLUT1的晶体结构可以精确地定位与疾病相关的突变氨基酸,揭示其致病机理。分析显示,三十余个突变氨基酸基本集中于三个区域:底物结合区域、胞外门控区、胞内门控区,它们的突变或者影响了底物识别,或者影响转运蛋白的构象变化。晶体结构使得理解这些致病突变的机理一目了然。与之前获得的向胞外半开口的XylE晶体结构比较揭示出 ICH在GLUT1的构象变化中起关键作用。鉴于ICH在糖转运蛋白亚家族的保守性,这一发现可能适用于该亚家族所有成员。

至此,颜宁实验室分别捕获了FucP向胞外开放,XylE结合底物半开放,GLUT1向胞内开放的三个MFS家族最具有代表性的转运状态结构,结构比对初步揭示出MFS糖转运蛋白在转运循环中的构象变化,对于理解MFS家族糖转运蛋白的转运过程提供了重要的分子基础。

这项工作的第一作者邓东博士是PTN博士研究生项目的第一位毕业生,其博士阶段针对TAL effector特异识别DNA分子机制的研究曾经入选2012年Science评选的年度十大进展及2012年度中国科学十大进展。目前邓东为清华-北大生命科学联合中心(CLS)的博士后;共同第一作者徐超和吴建平2012年于清华大学生命学院获得本科学位后加入CLS博士研究生项目,目前为博士二年级;共同第一作者孙鹏程来自生命学院01班,于大二暑假加入其班主任颜宁实验室,即开始参与GLUT1 的结构生物学研究,目前已被CLS录取,将于今年9月正式成为CLS的博士研究生。此外,本科来自于化生基科班、现为生命学院五年级博士研究生的闫创业和本科来自于数理基科班、现为CLS一年级博士生的胡名旭也对本工作做出重要贡献。

本工作获得了自然科学基金委、科技部、CLS的经费支持。颜宁自2012年起受到国家自然科学基金委杰出青年基金和HHMI国际青年科学家项目资助、2013年获得青年拔尖人才计划资助。特别值得一提的是,上海同步辐射光源(SSRF)为及时收集高质量衍射数据提供了必不可少的保障。

原文摘要:

Crystal structure of the human glucose transporter GLUT1

The glucose transporter GLUT1 catalyses facilitative diffusion of glucose into erythrocytes and is responsible for glucose supply to the brain and other organs. Dysfunctional mutations may lead to GLUT1 deficiency syndrome, whereas overexpression of GLUT1 is a prognostic indicator for cancer. Despite decades of investigation, the structure of GLUT1 remains unknown. Here we report the crystal structure of human GLUT1 at 3.2 Å resolution. The full-length protein, which has a canonical major facilitator superfamily fold, is captured in an inward-open conformation. This structure allows accurate mapping and potential mechanistic interpretation of disease-associated mutations in GLUT1. Structure-based analysis of these mutations provides an insight into the alternating access mechanism of GLUT1 and other members of the sugar porter subfamily. Structural comparison of the uniporter GLUT1 with its bacterial homologue XylE, a proton-coupled xylose symporter, allows examination of the transport mechanisms of both passive facilitators and active transporters.

相关新闻
生物通微信公众号
微信
新浪微博
  • 搜索
  • 国际
  • 国内
  • 人物
  • 产业
  • 热点
  • 科普
  • 急聘职位
  • 高薪职位

知名企业招聘

热点排行

    今日动态 | 人才市场 | 新技术专栏 | 中国科学人 | 云展台 | BioHot | 云讲堂直播 | 会展中心 | 特价专栏 | 技术快讯 | 免费试用

    版权所有 生物通

    Copyright© eBiotrade.com, All Rights Reserved

    联系信箱:

    粤ICP备09063491号