复旦大学Cell发布表观遗传重要发现

【字体: 时间:2016年04月11日 来源:生物通

编辑推荐:

  来自复旦大学、哈佛医学院的研究人员在新研究中揭示,由RACK7/KDM5C复合物充当增强子“刹车”,抑制了增强子过度激活。这一重要的研究发现发布在4月7日的《细胞》(Cell)杂志上。

  

生物通报道  来自复旦大学、哈佛医学院的研究人员在新研究中揭示,由RACK7/KDM5C复合物充当增强子“刹车”,抑制了增强子过度激活。这一重要的研究发现发布在4月7日的《细胞》(Cell)杂志上。

复旦大学的蓝斐(Fei Lan)教授与施扬(Yang Shi)教授是这篇论文的共同通讯作者。蓝斐教授的主要科研方向将拓宽到新兴的非组蛋白表观遗传修饰的生物学意义及其调控机理,作为蛋白质去甲基化领域的主要开辟者主导并参与发现了已知21类去甲基化酶中的16类。施扬教授长期从事生物化学以及分子生物学等方面的研究,并在表观遗传学研究中取得突破性成就,曾在国际上率先发现了首个组蛋白去甲基酶并开创表观遗传去甲基化领域,做为第一作者和通讯作者已发表过Nature和Cell及其子刊文章近20篇。

增强子是一类控制基因表达的重要调控元件,其借助于一组独特的染色质修饰以待发(primed)、准备(poised)和活化(active)三种状态存在。例如,H3K4me1与增强子的三种状态均有关联,这主要由MLL3/4所介导。单独的H3K4me1标记待发增强子。当与H3K27me3或H3K27Ac在一起时,这一组合的组蛋白修饰则进一步分别定义准备(H3K4me1/H3K27me3)和活化(H3K4me1/H3K27Ac)状态的增强子。将待发增强子转变为活化增强子是包括胚胎干细胞(ESC)分化在内的许多生物学过程中至关重要的一个步骤。

索取NEB EpiMark的详细技术资料,了解NEB如何帮你识别两种表观遗传学特征>> >>

新出现的证据表明,增强子调节异常有可能导致了包括癌症在内的一些有害的影响。例如,一些参与改变增强子染色质景观的酶,如组蛋白甲基转移酶MLL2、MLL3和MLL4;H3K4me2/3特异性去甲基化酶KDM5C;乙酰转移酶CBP/p300;以及组蛋白H3变体H3.3,被发现在各种癌症中频繁突变。与之相一致,近期一些癌症基因组测序工作也鉴别出了一些调控癌基因和抑癌基因表达的增强子和超级增强子发生遗传突变。这些功能和基因组研究凸显了增强子和它们的调控具有的重要影响,当其受损时可以导致肿瘤发生。

在这篇Cell文章中,研究人员报告称鉴别出了包含两个假定肿瘤抑制因子RACK7和KDM5C的一个染色质复合物。RACK7是一个潜在的染色质阅读器,KDM5C是一种组蛋白去甲基化酶。两者共同占据在包括几乎所有超级增强子在内的大量活化增强子上,发挥增强子负调控因子作用。他们证实RACK7与KDM5C发生了互作,丧失RACK7可显著损害KDM5C定位到活化增强子上,表明RACK7对于KDM5C招募至增强子处起重要作用。

遗传删除乳腺癌细胞系ZR-75-30中的RACK7或KDM5C,可导致靶增强子过度激活,其以RACK7结合增强子H3K4me3增多,H3K4me1减少,eRNA水平增高为特征。这些无RACK7的ZR-75-30细胞还显示体外非依赖性生长、迁移和侵袭能力增强,以及小鼠移植瘤模型中肿瘤生长增强。同样地,KDM5C丧失也可以导致类似的细胞迁移和侵袭增强,进一步支持了这一观点:RACK7和KDM5C协同作用调控了与肿瘤发生相关的细胞过程。

这些研究结果揭示出活化增强子受到负调控,RACK7和KDM5C协同作用通过控制活化增强子处H3K4me1与H3K4me3的动态,充当了活化增强子的“刹车”。丧失这样的增强子监管机制可以导致细胞行为改变,有可能促成了肿瘤发生。

近年,蓝斐教授和施扬教授联手发布了多篇具有影响力的研究论文。2014年9月,他们与加州大学洛杉矶分校的Yi Xing副教授合作证实BS69/ZMYND11通过读取组蛋白甲基化修饰H3.3K36me3及结合到H3.3K36me3修饰的染色质上调控了前体mRNA加工(pre-mRNA processing)。这一研究发现发表在molecular cell杂志上(复旦大学Cell子刊发表表观遗传新成果)。

2014年12月,两人在 PNAS杂志上发表了一篇题为“Histone H3.3 and cancer: A potential reader connection”的文章。在这篇文章中两位教授探讨了组蛋白H3.3与癌症之间的关联,并介绍了近期国内外的研究团体在对H3.3突变致癌机制的研究中取得的一些重要进展(复旦大学PNAS文章:组蛋白H3.3与癌症 )。

(生物通:何嫱)

生物通推荐原文摘要:

Suppression of Enhancer Overactivation by a RACK7-Histone Demethylase Complex

Regulation of enhancer activity is important for controlling gene expression programs. Here, we report that a biochemical complex containing a potential chromatin reader, RACK7, and the histone lysine 4 tri-methyl (H3K4me3)-specific demethylase KDM5C occupies many active enhancers, including almost all super-enhancers. Loss of RACK7 or KDM5C results in overactivation of enhancers, characterized by the deposition of H3K4me3 and H3K27Ac, together with increased transcription of eRNAs and nearby genes. Furthermore, loss of RACK7 or KDM5C leads to de-repression of S100A oncogenes and various cancer-related phenotypes. Our findings reveal a RACK7/KDM5C-regulated, dynamic interchange between histone H3K4me1 and H3K4me3 at active enhancers, representing an additional layer of regulation of enhancer activity. We propose that RACK7/KDM5C functions as an enhancer “brake” to ensure appropriate enhancer activity, which, when compromised, could contribute to tumorigenesis.

作者简介:

蓝斐

博士,教授,复旦大学生物医学研究院PI

蓝斐教授,博士生导师。1999年于上海复旦大学生物化学系获学士学位, 2002年获得复旦大学分子肿瘤学硕士学位,2008年获得美国哈佛大学细胞发育博士学位。博士期间在表观遗传甲基化可逆调控方向做出大量突出贡献,多篇论文发表在顶级期刊上,毕业时获得哈佛医学院院长提名嘉奖。博士毕业后,作为首位创始员工,受邀加入全球首批表观遗传制药公司(美)Constellation Pharmaceuticals,主要目标定位于将表观遗传学的科研成果转化成为有药用价值的产品,特别是在肿瘤和免疫疾病方面。在该公司,作为核心技术员工,参与大量公司组建工作并主导了多个药物研发项目,对表观遗传靶向性治疗的进展和前景有着极强的把握力。2012年11月辞去美国的职位,全职受聘于复旦大学,入选中组部第四批“青年****”(2012年11月),并同月荣获上海高校特聘教授(“东方学者”2012)称号。回国后,蓝斐教授的主要科研方向将拓宽到新兴的非组蛋白表观遗传修饰的生物学意义及其调控机理,并揭示表观遗传异常在肿瘤及其它疾病发生过程中的作用,为抗肿瘤药物靶标的发现以及最终成药提供理论和实验依据。
      
蓝斐教授作为蛋白去甲基化领域的主要开辟者主导并参与发现了已知的21类去甲基化酶中的16类,包括第一个去甲基化酶LSD1,以及之后的4大类JMJC去甲基化酶家族的发现和功能研究。此外,他还首次发现了未甲基化赖氨酸的识别机理。这些开创性的工作不仅为表观遗传学甲基化标记的动态调控提供了大量的实验证据,并大大完善了甲基化生物学调控的理论体系。

施扬

博士,“****”讲座教授,复旦大学生物医学研究院PI

施扬教授,博士生导师,复旦大学分时教授和哈佛大学终生教授。1982年毕业于上海医科大学药学系,1987年于纽约大学分子生物学专业获得博士学位。1991年受聘在哈佛大学医学院,于2004年聘为哈佛终生教授,并从2009年开始受聘为波士顿儿童医院医学系Merton Bernfield新生儿科学讲席教授。于2005年受聘复旦大学****讲座教授,上海生物医学研究院分时教授并担任本表观研究中心总负责人。2012年入选为“****”讲座教授 (B 类)。施扬教授长期从事生物化学以及分子生物学等方面的研究,并在表观遗传学研究中取得突破性成就,在国际上率先发现了首个组蛋白去甲基酶并开创表观遗传去甲基化领域

相关新闻
生物通微信公众号
微信
新浪微博
  • 搜索
  • 国际
  • 国内
  • 人物
  • 产业
  • 热点
  • 科普
  • 急聘职位
  • 高薪职位

知名企业招聘

热点排行

    今日动态 | 人才市场 | 新技术专栏 | 中国科学人 | 云展台 | BioHot | 云讲堂直播 | 会展中心 | 特价专栏 | 技术快讯 | 免费试用

    版权所有 生物通

    Copyright© eBiotrade.com, All Rights Reserved

    联系信箱:

    粤ICP备09063491号