清华大学学者最新一期Nature发表长文研究成果

【字体: 时间:2018年07月06日 来源:生物通

编辑推荐:

  研究人员报道了结合有复制起点DNA(ARS305)的酿酒酵母起点识别复合物(ORC)3-Å分辨率的冷冻电镜结构。此高分辨率结构不仅为理解酵母ORC如何识别和结合序列特异性的DNA复制起点提供了分子基础,同时也阐明了ORC如何通过弯曲DNA来进一步加载DNA复制解旋酶MCM2-7的分子过程。

  

北京大学生命科学学院、北京大学-清华大学生命科学联合中心,香港科技大学的研究人员以长文形式发表了题为“Structure of the origin recognition complex bound to DNA replication origin”的研究论文,报道了结合有复制起点DNA(ARS305)的酿酒酵母起点识别复合物(ORC)3-Å分辨率的冷冻电镜结构。此高分辨率结构不仅为理解酵母ORC如何识别和结合序列特异性的DNA复制起点提供了分子基础,同时也阐明了ORC如何通过弯曲DNA来进一步加载DNA复制解旋酶MCM2-7的分子过程。

这一研究成果公布在7月4日的Nature杂志上,文章的通讯作者分别为北京大学生命科学学院高宁教授与香港科技大学戴碧瓘教授和翟元樑博士(现为香港大学助理教授)。李宁宁、程稼萱以及林伟熙、研究员翟元樑为共同第一作者。

DNA复制起始在真核生物细胞体中受到严格精密的调控。DNA复制启动因子首先结合到DNA复制起点,以加载DNA复制解旋酶MCM2-7复合物到DNA上,随后MCM2-7被激活,DNA双链被解螺旋,从而启动DNA复制。真核生物的复制启动因子ORC由六个亚基组成。

所有真核生物都是利用ORC来标记DNA复制起始的位点。除了在基因组稳定性以及肿瘤的发生发展中显而易见的重要作用,人源 ORC复合物的多个亚基(包括ORC1,ORC4,ORC6,Cdc6)的功能缺失突变都和一类罕见遗传发育疾病直接相关(Meier-Gorlin syndrome,MGS)。MGS患者在胚胎期生长迟缓并伴随多种发育畸形,出生后发育也严重受阻并导致身材矮小、小耳症、膝盖骨缺失。

虽然在不同的真核生物中,ORC的蛋白质序列高度保守,但是ORC对DNA复制起点序列的选择性在不同物种间差别很大。酿酒酵母的ORC可以识别特异的DNA复制起点,而人源细胞的ORC结合的DNA序列却没有序列特异性,主要依赖染色体结构识别复制起点。ORC序列识别差异背后的分子机制,也一直是个未解之谜。

造成这种局面一个很大的原因,就是多年来一直没有ORC结合DNA的高分辨结构。已经发表的关于ORC结构中,要么复合物中没有DNA,要么分辨率较低,不足以提供足够的细节信息,我们仍然无法推测ORC与DNA是如何相互作用从而实现其功能的。

为了解开这个谜团, 高宁课题组和戴碧瓘课题组克服了一些技术问题,合作解析了酿酒酵母ORC结合DNA复制起始位点3-Å分辨率的冷冻电镜结构。

 

ORC-起点DNA复合物冷冻电镜结构(a)以及复合物结构中DNA在ACS以B1区域的两次弯曲(b)

研究解析的ORC-ARS305 DNA复合物的结构中,ARS305包含一段ARS高度保守序列(ARS consensus sequence, ACS)和一段B1元件序列,长度为72 bp。在这个结构中,ORC的六个亚基通过与磷酸骨架的非特异性以及与碱基的特异性相互作用环绕DNA,并在ACS和B1位点使DNA发生弯曲。该结构的一个关键特征是Orc1的保守碱性氨基酸区域(Orc1-BP,basic patch)深深地插入ACS的小沟中进行序列特异的碱基识别。另外,酵母特有的具有物种特异性的位于Orc4 Wing Helix结构域(WHD)中的Helix Insertion(Orc4-IH)嵌入ACS的大沟中,与相应的碱基形成疏水相互作用。

重要的是,在ACS区域形成的这些碱基特异的相互作用的碱基都非常保守。此外,在B1区域中,也有类似的来自Orc2和Orc5的碱性氨基酸区域插入到大沟和小沟中,与碱基相互作用,并使DNA弯曲。因此,酿酒酵母ORC高度序列特异性主要是通过ORC亚基的大沟、小沟插入基序与ACS保守碱基之间的特异性相互作用实现的。

序列比对分析显示,所有真核生物Orc1的N端都具有类似酿酒酵母的Orc1-BP;然而Orc4-IH却只是在酿酒酵母中存在。这些发现,很大程度上解释了不同物种ORC识别起始DNA特异性差异背后的原因。 

高宁课题组和戴碧瓘课题组从2013年开始合作,在真核生物DNA复制起始调控机制的研究方面取得了很好的成果。先后解析了酵母DNA复制解旋酶双六聚体复合物Mcm2-7的3.8-Å的冷冻电镜结构(Nature, 2015)以及解旋酶加载到DNA前游离的Mcm2-7六聚体和Cdt1-Mcm2-7七聚体复合物的结构(Nat Struct & Mol Biol, 2017)。

作者简介:

高宁现为北京大学生命科学学院长聘教授,北京大学-清华大学联合生命中心研究员。

高宁教授于2000年获北京大学学士学位、2006年获纽约州立大学奥尔巴尼分校生物医学系博士学位。2006-2008年先后在纽约沃兹沃斯中心(Wadsworth Center)、霍华德休斯医学研究所、哥伦比亚大学生化和分子生物物理系从事博士后研究。

高教授已获得国家自然基金委杰出青年基金资助、国家自然科学基金委优秀青年基金资助,荣获北京大学億方基金、谈家桢生命科学奖、茅以升北京青年科技奖、中源协和生命医学创新突破奖等荣誉。现任中国电子显微镜学会低温电镜专业委员会委员、中国生物物理学会单分子生物学分会理事、中国生物物理学会冷冻电镜分会副理事长兼秘书长。

      高教授主要致力于阐明细胞内大型蛋白-核酸复合物形成的分子机器的精细结构及工作分子机制,近年来的科研工作着重于核糖体的生物生成(ribosome biogenesis)、蛋白质生物合成的调控、DNA复制起始调控等重要基础生物学过程。实验室主要采用冷冻电镜三维重构的方法分析大型复合物的高分辨结构,辅助遗传学、细胞生物学、生化分子生物学手段回答大分子机器在功能执行过程中的机制性问题。同时,针对结构课题中的技术难点,实验室还致力于冷冻电镜方法学的研究,包括样品制备技术和算法的改进等。至今已在Cell、Nature、Cell Research、Molecular Cell等国际知名期刊发表多篇研究论文。

原文标题:

Structure of the origin recognition complex bound to DNA replication origin



我来说两句
0  条评论    0 人次参与
登录 注册发布
最新评论刷新
查看更多评论 > >
相关新闻
生物通微信公众号
微信
新浪微博
  • 搜索
  • 国际
  • 国内
  • 人物
  • 产业
  • 热点
  • 科普
  • 急聘职位
  • 高薪职位

知名企业招聘

热点排行

新闻专题

生物通首页 | 今日动态 | 生物通商城 | 人才市场 | 核心刊物 | 特价专栏 | 仪器龙虎榜

版权所有 生物通

Copyright© eBiotrade.com, All Rights Reserved

联系信箱:

粤ICP备09063491号