
-
生物通官微
陪你抓住生命科技
跳动的脉搏
DNA免疫研究进展(下)
【字体: 大 中 小 】 时间:2000年06月29日 来源:
编辑推荐:
(续前)DNA免疫引起的免疫反应
实验发现直接注射编码病毒蛋白的质粒DNA能够激起体液和细胞免疫反应。各种病毒疾病的动物模型实验已经证明这些反应具有保护性。在小鼠和非人类灵长类动物实验中,最早鉴定了流感病毒蛋白的抗体反应[15]。另外在小鼠、牛和非人类灵长类动物实验中也检测到其它病毒蛋白的抗体反应[26, 27]。编码流感病毒血凝素(HA)、基质蛋白和糖蛋白(NP)[15, 24],HIV的gp120[72]和gp160[20, 78],牛疱疹病毒的gpIV[27],狂犬病毒表面糖蛋白[28],乙肝表面抗原[29],丙肝核心抗原[79],淋巴细胞性脉络丛脑膜炎病毒的NP蛋白[80],单纯疱疹病毒gB、gD[81]蛋白的DNA肌肉免疫显示可诱导产生抗体。一些实验直接注射溶于盐溶液中的质粒DNA64,而另一些实验在注射过毒素或局部麻醉剂后再注射DNA,以通过注射部位肌肉的坏死和再生来提高目的基因的表达[65, 66]。目前为止,已经在一些实验中成功地产生了针对流感病毒HA,HIVgp160,狂犬病毒表面糖蛋白等的病毒中和抗体。产生血凝素的抑制(HI)和中和抗体表明流感病毒HA以天然构象存在于被转染细胞的表面。非洲绿猴和小鼠肌肉注射流感病毒HA-DNA可以获得持续抗体反应[31]。一年后以该质粒再次免疫,非洲绿猴可激起HI抗体滴度的迅速剧增[82]。
DNA免疫也可以用来产生针对非病毒病原体的抗原。通过肌肉注射质粒DNA,已经成功地产生了针对一种原生动物寄生虫Schistosoma
japonicum[39],原生生物Leishmania major[40]和Plasmodium joelii[83, 84],细菌Mycobacterium
tuberculosis[42, 85, 86]和Salmonella typhi,Mycoplasma pulmonis[43~45]的抗体反应。
DNA疫苗的保护性和治疗性作用
DNA免疫产生保护性作用最早是在针对流感病毒的实验中被证实的。肌肉注射NP-DNA的小鼠可以获得保护,能够对抗致死剂量病毒的攻击[15]。实验中使用NP-DNA免疫的小鼠的血清被动免疫其它小鼠,不能使它们获得保护,尽管血清中含高滴度的NP抗体。而将免疫小鼠的脾细胞移植至其它小鼠体内,可以使它们获得前面提到的保护[87, 88]。说明这种保护作用的获得是针对NP蛋白的细胞免疫结果。T细胞剔除实验进一步证明CD4+及CD8+T细胞均对保护的获得都作出贡献。而以NP蛋白免疫,则既不能激起CTL反应也不会产生保护作用[89]。
DNA疫苗不仅为预防许多感染性疾病开辟了一条极具前景的新路。DNA疫苗还可以用来治疗已经感染Mycoplasma pulmonis的动物[46]。实验中,被感染的BALB/C小鼠在5天内出现肺炎症状,DNA疫苗接种一周后,开始检测到病原生物的减少,4个月后完全清除,同时肺组织炎症症状逐渐减轻至消失[90]。
表达文库免疫(ELI)
鉴定某个病原生物的保护性抗原通常是一种费力、困难的工作,特别是需要细胞免疫获得保护的情况,因为一些类型的疫苗(如亚单位蛋白或灭活病毒)不能产生CTL反应。此外,检测特异性抗原需要纯化形式的蛋白。而DNA疫苗不仅可以诱导CTL反应,而且只需编码抗原的基因即可。利用ELI也许可以使发现疫苗抗原的工作大大简化。这种方法发展起来,通过检测含病原体基因组片段质粒的混合物,以发现保护性抗原[44]。
一组小鼠以来自M.pulmonis DNA文库的3000种不同质粒的混合物进行免疫,结果可以获得保护,能对抗野生型病原体的感染。说明其中至少含有一个质粒编码一个保护性抗原。接下来进行分部,进一步检测这些混合物,就有可能筛出具保护性的质粒。如前文所提,该方法有一定的缺陷,如同时表达大量抗原造成抗原竞争有可能掩盖重要表位。随着基因组研究飞快地进展,许多病原生物的序列信息可以迅速获得,这种途径将对鉴定疫苗抗原的工作有很大帮助。虽然该技术几年前已被提出,但到目前为止并没有利用此技术发现一个保护性抗原的基因,将来随着该方法的改进,可能会帮助更好地达到筛选目的[45]。有人已经预言抗原鉴定的ELI时代即将到来。
DNA作为免疫佐剂
药物学家们对DNA疫苗感兴趣的方面还在于它的特性,因为它可能不仅是简单的传送编码目的抗原的多核苷酸序列的静态载体。DNA疫苗的质粒骨架较编码的目的蛋白的免疫原性小。目前实验结果表明DNA自身对于激起被编码抗原的免疫反应有其免疫效应。细菌DNA是一种淋巴细胞的有丝分裂原,且这种刺激作用可能与细菌DNA的序列和甲基化形式相关的观点早已被接受[91, 92, 93]。
肌肉注射DNA疫苗导致诱导Th1类反应。各种DNA疫苗免疫动物的脾细胞经抗原特异性刺激后分泌IL-2和IFN-γ[94],间接的证明是实验发现抗体主要以IgG2a亚型为主[95]。相反,以包被于金颗粒上的DNA重复皮内免疫激起了Th-2类帮助性T细胞反应。倾向何类Th细胞免疫反应,可能是由与抗原表达相关的各种因素,而不是质粒自身的直接因素。然而有趣的是,与重组蛋白共注射不编码任何蛋白的质粒DNA,可以改变激起抗体反应的亚型类型[95]。这可能显示与蛋白抗原共注射非编码质粒有影响免疫反应的作用,因此表明DNA自身有免疫原性作用[94]。此外,与编码流感病毒HA的DNA疫苗共注射非编码质粒导致免疫的非洲绿猴体内抗体滴度的明显增加[94]。特异性保护实验表明DNA疫苗激起特异性保护确实需要质粒编码相关蛋白抗原,而不是因为简单的非特异免疫反应而获得保护[96]。
研究还表明DNA的免疫促进效应的机制可能在于质粒的特异序列和其甲基化形式。这一特异的序列模体(嘌呤-嘌呤-C-G-嘧啶-嘌呤)在体外实验中刺激NK细胞和淋巴细胞,激起它们分泌细胞因子[97]。CpG寡核苷与抗原共注射可以在体内产生显著作用。而是否该序列的双链形式也有类似效果,目前还并不清楚。一个特异的序列模体(AACGTT),插入编码β-半乳糖苷酶的DNA疫苗中,实验证明了促进针对编码蛋白的免疫反应[98]。然而编码其它抗原的类似载体并没发现有促进效应。因此,CpG模体的位置及结构,编码蛋白自身的抗原性,以及存在影响性或竞争性的核酸序列等因素,可能会影响到CpG模体是否对于DNA疫苗的功效有作用。
DNA疫苗在粘膜免疫方面的应用
大多数病原体通过粘膜的表面进入宿主,因此如何诱导粘膜表面的免疫反应是免疫学家极为关注的问题。目前DNA疫苗可以通过肠胃外接种和粘膜给药的两种方式诱导粘膜免疫开始得到学者们的关注及讨论。
在雪貂和鸡的免疫实验中,肠胃外DNA给药能够激起抵抗流感病毒攻击的保护性反应[99, 100, 101]。在其它实验中,肠胃外DNA免疫也能激起抵抗牛疱疹病毒攻击的保护反应,而使免疫后的动物不患感染性的牛鼻气管炎[102, 103]。以上这些实验都是粘膜系统被攻击的例子。特别值得一提的一个例子是:编码A/PR/8/34流感株HA的DNA免疫雪貂,在一些情况下可以完全防止同源流感病毒株的感染[104]。流感病毒DNA疫苗的一个特性在于可以在雪貂、鸡的动物实验中明显降低被免疫株相关的抗原突变株的感染(突变株与免疫株之间经血凝素抑制实验证明没有抗原交叉反应)的机率[99,105]。目前至少在流感病毒DNA疫苗研究中,肠胃外免疫可以激起保护反应,抵抗由粘膜系统进攻的病原体的侵入。这已得到广泛证实,并且事实上已经作为当前一些获批疫苗的基础。
由于肠胃外免疫通常只能产生边际效应的粘膜免疫反应,所以粘膜免疫更为严格的检测是由单纯疱疹病毒和人免疫缺陷病毒以及肠道病原体(如Vibrio和Shigella spp.)的生殖系统感染实验提供。通过豚鼠阴道感染疱疹病毒建立了一个人生殖系统疱疹病毒感染的模型,提供了检测感染引起的粘膜损伤和测定其它参数(如后肢麻痹、泌尿停滞以及检测脊髓椎板神经节中病毒的存在)的方法。以编码HSV-2包膜糖蛋白的DNA进行免疫,在血清中产生了类似于HSV-2阴道感染导致的抗体水平[106]。而以编码病毒gD、gB糖蛋白的DNA共同或分别单独免疫豚鼠,可以明显地降低人HSV-2阴道感染后生殖系统粘膜的损伤程度[106, 107, 108],此外在病毒攻击前的阴道分泌物含IgG亚型的gD-和gB-特异性抗体,这被认为可能是来自血清中抗体的渗出[108]。该模型中获得的保护作用被认为是抗体的作用,但细胞免疫反应可能也有一定的作用。编码HSV-2的gD或gB糖蛋白的DNA免疫小时或豚鼠后,免疫动物的淋巴细胞可以进行抗原特异地增殖,说明激起了一定的细胞免疫反应。此外,gB-特异的CTL反应也已经在编码gB的DNA免疫的C57BL/6小鼠实验中得到证实。Rouse和其同事证明了编码HSV-1 gB糖蛋白的DNA疫苗,在小鼠HSV感染的带状疱疹模型实验中诱导产生的CD4+细胞毒性T淋巴细胞具有保护性。在同样的感染模型中,他们还证实了以编码极早期反式激活因子ICP27的结构免疫能够激起CTL反应并获得保护[109]。
目前,基于通过粘膜途径进行DNA免疫可能产生更有效的粘膜免疫的假设,已经有不少直接粘膜DNA免疫的工作报导。DNA疫苗直接鼻内或阴道内免疫,证明可以产生HIV抗原[110, 111, 112]和HSV抗原的局部抗体[113]。而鼻内接种编码流感病毒HA的DNA产生对抗病毒攻击的保护作用[101]。另一些研究中,粘膜免疫佐剂(如霍乱毒素[114,113],使用阳离子脂整合DNA于脂质体中[115]或包裹DNA入多聚DL-lactidecoglycolide微粒中[116])得到成功地应用,帮助粘膜系统呈递DNA疫苗。
总结
总之,应用DNA疫苗诱导保护性免疫反应已经在各种动物模型中获得成功,并且已经开始了早期一期临床试验。目前的临床前期研究主要包括,研究各种方法指导特异免疫反应(如粘膜免疫反应),调节或促进免疫反应(如利用CpG模体或共接种佐剂或细胞因子)。此外,DNA疫苗已经被证明是一个研究抗原加工和呈递的有力工具。因为构造的方便,使得易于在蛋白中整合进不同的定位信号(如进入分泌途径、MHCI类呈递的蛋白酶体、MHCII类呈递的溶酶体的信号序列),或者通过缺失一定区段(如穿膜区)改造蛋白。而接下来可以相当系统性地研究这些改变对于特定抗原的体液及细胞免疫原性的影响。
因此,该项技术不仅作为一种新型疫苗,而且作为进行免疫学基础研究的一种方法,都显示出诱人的前景。
参考文献
1. Bolognesi DP, A live-virus AIDS vaccines? Not yet, it is too early to consider use of a live-attenuated virus vaccine against HIV-1, J NIH Res, 1994, 6:55~62.
2. Ada G, Strategies for exploiting the immune system in design of vaccines, Mol Immunol. 1991, 28:225~230.
3. McKee KT, Jr Brancroft, WH, Eckels, et al, Lack of attenuation of a candidate dengue 1 vaccine (45AZ5) in human volunteers, Am J Trop Med Hyg, 1987,36:435~442.
4. Rabinovich NR, McIness P, Klein DL, et al, Vaccine technologies: view to the future, Science, 1994, 265:1401~1404.
5. Fynan EF, Webster RG, Fuller DH, et al, DNA vaccines: Protective immunization by parenteral, mucosal and gene gun inoculation, Proc Natl Acad Sci U.S.A., 1993, 90:11478.
6. Levine MM, Howe MM, Stocker BAD, et al, New and improved vaccine against Typhoid fever, in New Generation Vaccine, Woodrow, G. and Levine, M. M. Eds, Marcel Dekker, New York, 1990, 269~287.
7. Sharm SD, Araudjo FG, Remington JS, Toxoplasma antigen isolated by affinity chromatrography with monoclonal antibody protects mice against lethal infection with Toxoplasma gondii, J Immunol, 1984, 133:2818~2820.
8. Lai WC, Bennett M, Pakes SP, et al., Potential subunit vaccine against Mycoplasma pulmonis purified by a protective monoclonal antibody, Vaccine, 1990, 9:177~184.
9. Crane MSJ, Muvry PK, Gnozzio MJ, et al, Passive protection of chickens against Eimeria tenella infection by monoclonal antibody, Infect Immunol, 1998, 56:972~976.
10. Zweerink HJ, Gannon MC, Hutchison CF, et al, Human monoclonal antibodies that protect mice against challenges with Pseudomonas aeruginosa, Infect Immunol, 1994, 56:1837~1879.
11. Ulmer JB, Deck RR, DeWitt CM, et al, Expression of a viral protein by muscle cells in vivo induces protective cell-mediated immunity, Vaccine, 1997, 15:839~841.
12. Albert ML, Sauter B, Bhardwaj N, Dendritic cells aquire antigen from apoptotic cells and induce class I-restricted CTLs, Nature, 1998, 392:86~89.
13. Cresswell P, Denzin LK, HLA-DM induces CLIP dissociation from MHC class II *:* dimers and facilitates peptid loading, Cell, 1995, 82:155~165.
14. Steinman RM, The dendritic cell system and its role in immunogenicity, Annu Rev Immunol, 1993, 9:271~296.
15. Ulmer JB, Donnelly JJ, Parker SE, et al, Heterologous protection against influenza by injection of DNA encoding a viral protein, Science, 1993, 259:1745~1749.
16. Conry RM, Lobuglio AF, Kantor J, et al, Immune response to a carcinoembryonic antigen polynucleotide vaccine, Cancer Res., 1994, 54:1164~1168.
17. Katsumi A, Humoral and cellular immunity to an encoded protein induced by direct DNA injection, Human Gene Ther, 1994, 5:1335~1339.
18. Daniet E, DNA immunization, Trends in microbiology, 1996, 4:307~312.
19. Zoraqui G, Spadafora C, Integration of foreign DNA sequences into mouse sperm genome, DNA Cell Biol, 1997, 16:291~300.
20. Kurth R, Risk potential of the chromosomal insertion of foreign DNA, Ann Y Acad Sci, 1995, 772:140~151
21. Tang D, Devit M, Johnston SA, Genetic immunization is a simple method for eliciting an immune response, Nature, 1992, 356:152~154.
22. Miller AD, Human gene therapy comes of age, Nature, 1992, 357:455~460.
23. Burstyn DG, Baraff LJ, Peppler MS, et al, Serological response to filamentous hemagglutinin and lymphocytosis-promoting toxin of Bordetella petussis, Infect Immunol, 1983, 41:1150~1156.
24. Montgomery DL, Shiver, JW, Leadner, KR, et al, Heterologous and homologous protection against influenza A by DNA vaccination optimization of DNA vector, DNA Cell Biol, 1993, 12:777~783.
25. Rhodes GH, Abai AM, Margalith M, et al, Charcterization of humoral immunity after DNA injection, Dev Biol Stand, 1994, 82:229~236.
26. Wang B, Ugen KE, Srikantan V, et al, Gene inoculation generates immune responses against human immunodeficiency virus type 1, Proc Natl Acad Sci USA, 1993, 90:4156~4160.
27. Cox G. JM, Lamb ML, Babuuk LA, Bovine herpesvirus 1: immune response in mice and cattle injected with plasmid DNA, J Virol, 1993, 67:5664~5667.
28. Xiang ZQ, Spitalnick S, Tran M, et al, Vaccination with a plasmid vector carrying the rabeis virus glycoprotein gene induce protective immunity against rabies virus, Virology, 1994, 199:132~140.
29. Davis HL, Michel ML, Whalen RG, DNA based immunization induced continuous secretion of hepatitis B surface antigen and high levels of circulating antibody, Hum Mol Genet, 1993, 1847~1851.
30. Major ME, Vitvitski L, Mink MA, et al, DNA-based immunization with chimeric vectors for the induction of immune responses against the hepatitis C virus nucleo capsid, J Virol, 1995, 69:5798~5805.
31. Polo JM, Lim B, Govindarajan S, et al, Replication of hepatitis delta virus RNA in mice after intramuscular injection of plasmid DNA, J Virol, 1995, 69:5203~5207.
32. Yokoyama M, Zhang J, Whitton JC, DNA immunization confers protection against lethal lymphocytic choriomeningitis virus infection, J Virol, 1995, 69:2684~2688.
33. Pedroza-Martins LP, Lau LL, Asano MS, et al, DNA vaccination against persistent viral infection, J Virol, 1995, 69:2574~2582.
34. Donnelly JJ, Martinez D, Jansen KU, et al, Protection against Pappillomavirus with a polynucleotide vaccine, J Infect Dis, 1996, 713:314~320.
35. Manickan E, Rouse RJD, Yu Z, et al, Genetic immunization against Herpes simplex virus; protection is mediated by CD4+ T lymphocytes, J Immunol, 1995, 155:259~265.
36. Ghiasi H, Cai S, Slanina S, et al, Vaccination of mice with Herpes simplex virus type 1 glycoprotein DNA produces low level of protection against lethal HSV-1 challenge, Antiviral Res, 1995, 28:147~157.
37. Lowrie DB, Tascon, RE, Colston, MJ, et al, Toward a DNA vaccine against tuberculosis, Vaccine, 1994, 12:1537~1540.
38. Lopez-Macias C, Lopez-Hernandez MA, Gonzalez CA, et al, Induction of antibodies against Salmonella typhii. Omx C poria by naked DNA immunization, Ann NY Acad Sci, 1996, 772:285~288.
39. Yang W, Waine GJ, McManus PD, Antibodies to Schistosoma japonicarum (Asian blood fluke) paramyosin by nucleic and vaccination. Biochem Biophys Res Comn, 1995, 212:1029~1039.
40. Xu D, Liew FY, Genetic vaccination against leishmaniasis, Vaccine, 1994, 12:1534~1536.
41. Xu D, Liew FY, Protection against Leishmanias by injection of DNA encoding a major surface glycoprotein gp63 .of L. major, Immunology, 1995, 84:173~176.
42. Sedegah Q, Hedstrom R, Hobart P, et al, Protection against malaria by humanization with circumsporozoite protein plasmid DNA. Proc Natl Acad Sci USA, 1994, 91:9866~9870.
43. Lai WC, Bennett M, Barry M, et al, Protection against Mycoplasma pulmonis infection by genetic vaccination. DNA Cell Biol, 1995, 14:643~651.
44. Barry M, Lai WC, Johnson SA, Expressed library immunization is a simple method to produce a vaccine, Nature, 1995, 337:632~635.
45. Johnston SA, Barry M, Genetic to genomic vaccination, Vaccine, 1997, 15:808~809.
46. Lai WC, Pakes SP, Ren K, et al, Therapeutic effect of DNA immunization of genetically susceptible mice infected with virulent, Mycoplasma pulmonis, J Immunol, 1997, 158:2513~2516.
47. Conry RM, Lobuglio AF, Loechel F, et al, A carcinoembryonic antigen polynucleotide vaccine has in vivo antitumor activity, Gene Ther, 1995, 2:59~65.
48. Irvine KR, Rao JB, Rosenberg SA, et al, Cytokine enhancement of DNA immunization leads to effective treatment of established pulmonary metatases, J Immunol, 1996, 156:238~245.
49. Hsu CH, Chua KY, Tao MH, et al, Inhibition of specific IgE response in vivo by allergen-gene transfer, Intl Immunol, 1996, 8:1405~1411.
50. Lee DJ, Tighe H, Corr M, et al, Inhibition of IgE antibody formation by plasmid DNA immunization is mediated by both CD4+ and CD8+ T cells, Int Arch Allergy Immunol, 1987, 113:227~230.
51. Ulmer JB, Liu MA, ELI’s coming: expression library immunization and vaccine antigen discovery, Trends Microbiol, 1986, 4:101~105.
52. Foecking MK, Hofstetter H, Powerful and versatile enhancer-promoter unit for mammalian expression vectors, Gene, 1986, 45:101~105.
53. Chapman BS, Tayer RM, Vincent KA, et al, Effect of intron A from human Cytomegalovirus (Towne) immediate early gene on heterologous expression in mammalian cells, Nucl Acid Res, 1991, 19: 3979~3986.
54. Felgner PL, Tsai YJ, Suklee L, et al, Improved cationic lipid formulation for in vivo gene therapy, Ann NY Acad Sci, 1995, 772:126~139.
55. Iwasaki A., Niclas Stiernholm BJ, Chan AK, et al., Enhanced CTL responses mediated by plasmid DNA immunogen encoding costimulatory molecules and cytokines, J Immunol, 1997, 158:4591~4601.
56. Kim JJ, Bagarazzi ML, Trivedi N, et al, Engineering of in vivo immune responses to DNA immunization via codelivery of costimulatory molecule genes, Nat Biotechnol, 1997, 15:641~646.
57. Chow YH, Huang WL, Chi WK, et al, Improvement of hepatitis B virus DNA vaccine by plasmids coexpressing hepatits B surface antigen and interleukin-2, J Virol, 1997, 71:169~178.
58. Nagel GJ, Nabel EG, Yang ZY, et al, Direct gene transfer with DNA-liposome complexes in melanoma: expression, biologic activity and lack of toxicity in humans, Proc Natl Acad Sci USA, 1993, 90:11307~11311.
59. Vahlsing HL, Immunization with plasmid DNA using a pneumatic gun, J Immunol Meth, 1994, 175:11~22.
60. Eisenbraun MD, Fuller DH, Haynes JR, Evaluation of parameters affecting the elicitation of humoral immunoresponses by peptide bombardment-mediated genetic immunization, DNA Cell Biol, 1993, 12:791~797.
61. Yang NS, Luna CD, Cheng L, Gene transfer via particle bombardment: Applications of the accel gene gun, in Gene Therapeutics: Methods and Applications of Direct Gene Transfer, Wolf JA, Ed, 1994, 193~209.
62. Johnston SA, Tang DC, The use of microparticle injection to introduce genes into animal cells in vitro and in vivo, in Genetic Engineering, Setlow JK, Ed, Plenum Press, New York, 1993, 225~236.
63. Wolf JA, Ludtke JJ, Acsadi A, et al, Long-term persistence of plasmid DNA and foreign gene expression in mouse muscle, Hum Mol Genet, 1992, 1:363~369.
64. Deck RF, DeVitt CM, Donnelly JJ, et al, Characterization of humoral immune response induced by an influenza hemagglutinen DNA vaccine, Vaccine, 1997, 15:71~78.
65. Davis HC, Michel MC, Mancini M, et al, Direct gene transfer in skeletal muscle: plasmid DNA-based immunization against the hepatitis B virus surface antigen, Vaccine, 1994, 16:1545~1550.
66. Coney L, Wang B, Ugen KE, et al, Faciliated DNA inoculation induces anti-HIV-1 immunity in vivo, Vaccine, 1994, 16:1545~1550.
67. Zhu N, Liggitt D, Liu Y, et al, Systemic gene expression after intravenous DNA delivery into adult mice, Science, 1993, 261:209~211.
68. Whitton JL, Yokoyama M, Proteins expressed by DNA vaccines induce both local and systemic immune responses, Ann NY Acad Sci, 1996, 797:196~200.
69. Salmon JR, Armstrong CA, Ansel JC, The skin as an immune organ, West J Med, 1994, 160:146~152.
70. Raz E, Carson DA, Parker SE, et al, Intradermal gene immunization: The possible role of DNA uptake in the induction of cellular-immunity to viruses, Proc Natl Acad Sci USA, 1994, 91:9519~9523.
71. Fynan EF, Webster RG, Fuller DH, et al, DNA vaccines: a novel approach to immunization, Int. J Immunopharmacol, 1995, 17:79~83.
72. Shiver JW, Perry HC, Davies ME, et al, Immune responses to HIV gp-120 elicited by DNA vaccination, in Vaccines 95, Brown F, Chanock RM, ginsberg HS, and Norrby E, Eds, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1995:95~98.
73. Tang DC, Shi ZK, Curiel DT, Vaccination onto bare skin, Nature, 1997, 388:729~730.
74. Sizemore DR, Branstrom AA, Sadoff JC, Attenuated Schigella as a DNA delivery vehicle for DNA-mediated immunization, Sciense, 1995, 270:299~302.
75. Sansonetti PJ, Hale TL, Dammin GJ, et al, Alternation in the pathogenicity of Escherichia coli K-12, after transfer of plasmid and chromo-somal genes from Schigella flexneri, Infect Immune, 1983, 39:1392~1402.
76. Portnoy DA, Jones S, The cell biology of Listeria monocytogenes infection, Ann NY Acad Sci, 1994, 730:15~25.
77. Gerloni M, Billetta R, Xiong S, et al, Somatic transgene immunization with DNA encoding an immunoglobulin heavy chain, Vaccine, 1997, 16:611~625.
78. Wang B, Boyer J, Srikautan V, et al, DNA inoculation induces neutralizing immune responses against human immunodeficiency virus type 1 in mice and non-human primates, DNA Cell Biol, 1993, 12:799~805.
79. Lagging LM, Meyer K, Hoft D, et al, Immune responses to plasmid DNA encoding the hepatitis C virus core protein, J Virol, 1995, 69:5859~5863.
80. Yokoyama M, Zhang J, Whitton JL, DNA immunization confers protection against lethal lymphocytic choriomeningitis virus infection, J Virol, 1995, 69:2684~2688.
81. Kriesel JD, Spruance SL, Daynes RA, et al, Nucleic acid vaccine encoding D1 protects mice from Herps simplex virus type 2 disease, J Infect Dis, 1996, 173:536~541.
82. Donnelly JJ, Friedman A, Martinez D, et al, Preclinical efficacy of a prototype DNA vaccine: enhanced protection against antigenic drift in influenza virus, Nat Med, 1995, 1:583~587.
83. Hoffman SL, Sedegah M, Hedstrom RC, Protection against malaria by immunization with a Plasmodium yoelii circumsporozoite protein nucleic acid vaccine, Vaccine, 1994, 12:1529~1533.
84. Mor G, Klinman DM, Shapiro S, et al, Complexity of the cytokine and antibody response elicited by immunizing mice with Plasmodium yoelii circumsporozoite protein plasmid DNA, J Immunol, 1995, 155:2039~2046.
85. Huygen K, Content J, Denis O, et al, Immunogenicity and protective efficacy of a tuberculosis DNA vaccine, Nat. Med., 1996, 2:893~898.
86. Tascon RE, Colston MJ, Ragna S, et al, Vaccination against tuberculosis by DNA injection, Nat Med, 1996, 2:888~892.
87. Ulmer JB, Deck RR, Dewitt CM, et al, Protective immunity by intramuscular injection of low doses of influenza virus DNA vaccines, Vaccine, 1994, 12:1541~1544.
88. Fu TM, Friedman A, Ulmer JB, et al, Protective cellular immunity: cytotoxic T-lymphocyte responses against dominant and recessive epitopes of influenza virus nucleoprotein induced by DNA immunization, J Virol, 1997, 71:2715~2721.
89. Donnelly JJ, Ulmer JB, Liu MA, Protective efficacy of intramuscular immunization with naked DNA, Ann NY Acad Sci, 1995, 772:40~46.
90. Lai WC, Linton G, Bennett M, et al, Genetic control of resistance to Myco-plasma pulmonis infection in mice, Infect Immun, 1993, 61:4615~4621.
91. Yamamoto S, Yamamoto T, Kataoka T, et al, Unique palindromic sequences in synthetic oligonucleotides are required to induce TNF and augment TNF-mediated natural killer activity, J Immunol, 1992, 148:4072~4076.
92. Messina JP, Gilkeson GS, Pisetsky DS, The influence of DNA structure on the in vitro stimulation of murine lymphocytes by natural and synthetic polynucleotide antigens, Cell Immunol, 1993, 147:1478~157.
93. Krieg AM, Yi AK, Matson S, et al, CpG motifs in bacterial DNA trigger direct B-cell activation, Nature, 1995, 374:546~549.
94. Donnelly JJ, Ulmer JB, Shiver JW, et al, DNA vaccines, Annu Rev Immunol, 1997, 15:617~648.
95. Feltquate DM, Heaney S, Webster RG, et al, Different T helper cell types and antibody isotypes generated by saline andgene gun DNA immunlization, J Immunol, 1997, 158:2278~2284.
96. Ulmer JB, Donnely JJ, Parker SE, et al, Heterologous protection against influenza by injection of DNA encoding a viral protein, Science, 1993, 259:1745~1749.
97. Klinman DM, Yi AK, Beaucage SL, et al, CpG motifs present in bacteria DNA rapidly induce lymphocytes to secrete interleukin 6,interleukin 12, and interferon γ, Proc Natl Acad Sci USA, 1996, 93:2879~2883.
98. Sato Y, Roman M, Tighe H, et al, Immunostimulatory DNA sequences necessary for effective intradermal gene immunization, Science, 1996, 273:352~354.
99. Donnelly JJ, Friedman A, Martinez D, et al, Preclinical efficacy of a prototype DNA vaccine - enhanced protection against antigenic drift in influenza-virus, Nature Med, 1995, 1:583~587.
100. Webster RG, Fynan EF, Santoro JC, et al, Protection of ferrets against influenza challenge with a DNA vaccine to the hemagglutinin, Vaccine, 1994, 12:1495~1498.
101. Fynan EF, Webster RG, Fuller DH, et al, DNA vaccines - protective immunizations by parenteral, mucosal, and gene-gun inoculation, Proc Natl Acad Sci USA, 1993, 90:11478~11482.
102. Babiuk LA, Lewis P J, Cox G, et al, DNA immunization with bovine herpesvirus-1 genes. Ann NY Acad Sci, 1995, 772:47~63.
103. Cox G, Zamb TJ, Babiuk LA, Bovine herpesvirus-1 - immune-responses in mice and cattle injected with plasmid DNA, J Virol, 1993, 67:5664~5667.
104. Donnelly JJ, Ulner JB, Liu MA, Protective efficacy of intramuscular immunization with naked DNA, Ann NY Acad Sci, 1995, 772:40~46.
105. Kodihalli S, Haynes J, Robinson H, et al, Cross-protection among lethal H5N2-Influenza viruses induced by DNA vaccine to the hemagglutinin, J Virol, 1997, 71:4888~4897.
106. Bourne N, Stanberry LR, Bernstein DI, et al, DNA immunization against experimental genital herpes simplex virus infection, J Infect Dis, 1996, 173:800~807.
107. McClements WL, Armstrong ME, Keys RD, et al, Immunization with DNA vaccines encoding glycoprotein D or glyprotein B, alone or in combination, induces protective immunity in animal models of herpes simplex virus-2 disease, Proc Natl Acad Sci USA, 1996, 93:11414~11420.
108. McClements, W. L., Armstrong, M. E., Keys, R. D., et al., The prophylactic effect of immunization with DNA encoding herpes simplex virus glycoprotein on HSV-induced disease in guinea pigs, Vaccine, 1997, 15, 857-860.
109. Manickan E, Rouse R, Yu ZY, et al, Genetic immunization against herpes-simplex-virus protection is mediated by CD4+ T-lymphocytes, J Immunol 1995, 155:259~265.
110. Asakura Y, Hamajima K, Fukushima J, et al, Induction of HIV-1 Nef-specific cytotoxic T lymphocytes by Nef-expressing DNA vaccine, Am J Hematol, 1996, 53:116~117.
111. Hinkula J, Lundholm P, Wahren B, Nucleic acid vaccination with HIV regulatory genes: a combination of HIV-1 genes in separate plasmids induces strong immune responses, Vaccine, 1997, 15:874~878.
112. Wang B, Dang K, Agadjanyan MG, et al, Mucosal immunization with a DNA vaccine induces immune responses against HIV-1 at a mucosal site, Vaccine, 1997, 15:821~816.
113. Kuklin N, Daheshia M, Karem K, et al, Induction of mucosal immunity against herpes simplex virus by plasmid DNA immunization, J Virol, 1997, 71:3138~3145.
114. Ban EM, van Ginkel FW, Simecka JW, et al, Mucosal immunization with DNA encoding influenza hemagglutinin, Vaccine, 1997, 15:811~813.
115. Klavinskis LS, Gao L, Barnfield C, et al, Mucosal immunization with DNA-liposome complexes, Vaccine, 1997, 15:818~820.
116. Jones DH, Corris S, McDonald S, et al, Poly (DL-lactide-co -glycolide) -encapsulated plasmid DNA elicits systemic and mucosal antibody responses to encoded protein after oral administration, Vaccine, 1997, 18:814~817.
117. Wayne CL, Michael B, DNA Vaccines, Critical ReviewsTM in Immunology, 1998, 18:449~484.