非结构蛋白4B(NS4B)
NS4B,跨HCV多蛋白aa1712-aa1972(27kD), 是一个非常疏水的蛋白。目前所知的NS4B的功能只有一个。它和NS3以及NS4A一起,为非结构蛋白NS5A的高度磷酸化所必需;NS5A要从p56形式转变为高度磷酸化的p58形式,要求NS3,NS4A,NS4B和NS5A被编码在一个多蛋白上(Neddermann, et al., 1999; Koch, et al., 1999)。
NS5A
通过和其他病毒的比较,NS5A(aa1973-aa2420, p58)以及NS4B被预测为复制酶的重要组成成分。NS5A被发现和一个膜结合蛋白hVAP-33( human vesicle-associated membrane protein-associated protein of 33 kDa)有特异的结合,同时hVAP-33还和HCV的RdRp(NS5B)相结合。NS5A和NS5B分别和hVAP-33的羧端和氨端结合(Tu, et a., 1999)。此结合进一步提示NS5A是复制酶的组成部分并提示了复制酶在膜上定位的机制。
NS5A的两种形式p56和p58均为磷酸化蛋白,尤其后者为高度磷酸化蛋白。磷酸化暗示了此蛋白具有重要功能,比如在信号传导、转录调控、细胞凋亡等行为中起作用。
NS5A具有多个脯氨酸富集区域,能和细胞信号分子的SH-3结构花式相结合,免疫印迹的方法显示NS5A和生长因子受体结合蛋白2(Grb2)有特异的结合,Grb2上SH-3的点突变能去除Grb2结合NS5A的能力。同样利用突变方法,证实了和SH-3结合的区域是NS5A的脯氨酸富集区域(Tan, et al., 1999)。NS5A可能通过此途径干扰细胞信号传导(如对ERK1/2磷酸化的抑制,ERK:受细胞外信号调控的激酶),这可能是HCV的致病机制之一。
有研究表明NS5A可能抑制p21WAF1的转录(Ghosh, et al., 1999), p21WAF1是细胞周期调控因子。利用酵母双杂交系统,发现NS5A和细胞转录因子SRCAP的羧端有特异结合,此结合为哺乳动物双杂交分析、免疫共沉淀等实验所证实(Ghosh, et al., 2000a)。因此NS5A可能通过SRCAP间接进行转录调控。
NS5A调控细胞凋亡的证据是它能抑制TNF-α引起的细胞凋亡。NS5A被发现能阻断caspase-3的激活,并抑制死亡底物poly (ADP-ribose) polymerase的酶解(Ghosh, et al., 2000b)。
在研究基因型对治疗的影响时发现,NS5A在HCV对α干扰素的抗性中起作用,此抗性位于HCV多蛋白aa2209-aa2248 (Enomoto, et al., 1995; Enomoto, et al., 1996)。 病人携带的HCV序列在此区段属1b基因型时,对干扰素治疗几乎无反应。此抗性的分子机制还不清楚。但有证据表明NS5A是PKR的有效的抑制因子(Gale, et al., 1997),而PKR是干扰素诱导的蛋白激酶,它催化真核翻译起始因子2的 α亚单位的磷酸化,造成蛋白合成的终止以及被感染细胞的死亡(图3)。
非结构蛋白5B(NS5B)
根据和其他病毒的RNA依赖的RNA聚合酶(RdRp)顺序的同源性比较,HCV多蛋白 aa2421-3011被指定为HCV的RdRp,即复制酶复合物最重要的成份,在真核体外表达系统表达产物大小为68kD,即p68(Choo, et al., 1989)。缺失突变分析表明NS5B的N末端负责结合RNA(Ishii, et al., 1999)。杆状病毒表达的NS5B在体外系统中显示了RdRp活性,证实了上述的推测(Behrens, et al., 1996)。进一步的生化和酶动力学分析表明(Lohmann, et al., 1998):1,NS5B受KCl或高浓度的NaCl抑制;2,NS5B的活性依赖于Mg离子,Mg离子也可被Mn离子所代替;3,NS5B持续性地合成RNA,在22°C的延长速率为150-200nt/min;4,以HCV基因组最后319nt为模板,NS5B对四种核苷酸底物的动力学常数Km值为UTP(约1.0μM), GTP(约0.5μM), ATP(约10μM), 和 CTP(约0.3μM)。
单链RNA的复制过程要求RdRp具有引物酶活性或者在复制起始时它能利用某个特异的引物。in vitro 实验表明NS5B能使用模板的3’末端羟基作为引物;而如果模板3’末端被封闭或者模板是一个单调的多聚核苷酸,NS5B起始复制时需要特定的寡聚核苷酸引物。这表明NS5B没有内在的引物酶活性(Behrens, et al., 1996; Lohmann et al., 1997)。
3’UTR
3’UTR的5’端约30nt的片段是一个基因型特异的多变区,不同基因型之间有核苷酸序列的差异。紧接着是一个多聚U区域,不同基因型的HCV的多聚U有不同的长度。然后是一个多聚嘧啶C(U)区域,最后是一段高度保守的98碱基的区域(Kolykhalov, et al., 1996; Tanaka, et al., 1996),被称为X区域。高度保守的3’末端暗示了3’UTR的重要功能。通过和其他RNA病毒相比较,推测这个高度保守的98碱基序列可能和病毒基因组的包装有关系,也可能参与RNA合成起始,或对两者都很重要。从具有感染力的cDNA克隆及其3'UTR的缺失突变株制备RNA转录本,用猩猩来测试感染性,发现多聚U、多聚C(U)或X区域的部分或全部缺失都使RNA转录本丧失了感染性;而破坏了5'端多变区2个茎环结构的缺失却对RNA的感染性没有影响(Ynangi, et al., 1999)。
3'端多聚A能增强真核mRNA的翻译。HCV的RNA没有多聚A尾巴,但它的3'端X区域被发现具有类似的作用。X-区域具高度保守的茎环结构,能结合一种多聚嘧啶结合蛋白(PTB)。PTB恰能与5'UTR的IRES相结合。缺失突变分析表明,含有X区域的RNA的翻译水平比没有X区域的RNA要高2到4倍,使X区域丧失结合PTB能力的突变降低但没有完全丧失X区域对RNA翻译的增强。X区域对翻译的增强被发现为顺式作用,且能增强另一依赖IRES的翻译,即脑心肌炎病毒RNA的翻译,而对5'加帽的mRNA的翻译没有增强(Ito, et al., 1998)。
结语
HCV的RNA基因组编码了一个ORF和两个具重要功能的UTR。5’UTR编码IRES,3’UTR可能含有RNA包装或/和复制所需的重要序列。ORF翻译产生的一个多蛋白被蛋白酶切割为十个蛋白质。N末端是三个结构蛋白:核心蛋白和包膜蛋白E1,E2,由宿主编码的信号肽酶从多蛋白上切下。现已知随后的非结构蛋白区编码了四种酶活性:1,自切割蛋白酶NS2-3和NS3氨端丝氨酸蛋白酶,后者切割3/4A,4A/4B,4B/5A和5A/5B位点。NS4A是NS3重要的辅助因子。2,NS3的RNA解旋酶。3,NS3的NTP酶。4,NS5B编码的RdRp。目前在开发抗病毒药物是都是以这些重要的功能蛋白以及UTR的保守序列为目标。在HCV的生长周期中,p7、NS4B和NS5A的功能尚不明确,其它蛋白的功能也需在HCV复制系统中得到进一步证实。
HCV感染是慢性肝炎的最主要的致病因子,并且引起肝硬化和肝癌。一般认为HCV的核心蛋白能转化细胞引起癌症,其致病机理可能和核心蛋白调控转录的能力有关。NS3也被发现有转化能力,此转化能力可能来源于NS3的DNA解旋酶活性。磷酸化蛋白NS5A对信号传导的干扰、对基因转录、细胞凋亡的调控也可能对HCV的致病性有贡献。阐明它们转化细胞、影响细胞生命活动的机制将有助于抗HCV药物的开发,并增进我们对生命现象中信号传导、转录调控、细胞分化和发育的认识。
有证据显示HCV编码的核心蛋白、E2和NS5A能抑制宿主的免疫反应。可能免疫抑制和HCV的高突变率都是HCV慢性化以及HCV免疫逃避的重要原因。感染HCV的病人大约有25%能自动清除体内病毒(Paliago, et al., 1999)。有证据表明这是机体产生了较强的体液或细胞免疫反应所致(Choo, et al., 1994; Cooper, et al., 1999)。因此,在疫苗开发和抗病毒药物开发的同时,研究HCV对宿主免疫抑制的机理,以期采取措施避免宿主免疫系统被抑制,激活、提高宿主本身对HCV的抵抗力,也许能为HCV的治疗和预防开辟一条新路。
文献
- Agnello V, Abel G, Elfahal M, Knight GB, Zhang QX, 1999, Hepatitis C virus and other flaviviridae viruses enter cells via low density lipoprotein receptor, Proc Natl Acad Sci U S A, 96:12766-71
- Bartenschlager R, Ahlborn-Laake L, Mous J, Jacobsen H, 1993, Nonstructural protein 3 of the hepatitis C virus encodes a serine-type proteinase required for cleavage at the NS3/4 and NS4/5 junctions, J Virol., 67: 3835-44
- Bartenschlager R, Ahlborn-Laake L, Mous J, Jacobsen H, 1994, Kinetic and structural analyses of hepatitis C virus polyprotein processing, J Virol., 68: 5045-55
- Bartenschlager R and Lohmann V, 2000, Replication of hepatitis C virus, J Gen Virol., 81:1631-48
- Bazan JF, Fletterick RJ, 1988, Viral cysteine proteases are homologous to the trypsin-like family of serine proteases: structural and functional implications, Proc Natl Acad Sci U S A, 5:7872-6
- Behrens SE, Tomei L, De Francesco R, 1996, Identification and properties of the RNA-dependant RNA polymerase of hepatitis C virus, EMBO J., 15: 12-22
- Brown EA, Zhang H, Ping LH, Lemon SM, 1992, Secondary structure of the 5’ nontranslated regions of hepatitis C virus and pestivirus genomic RNAs, Nucleic Acids Res., 20: 5041-45
- Chang SC, Yen JH, Kang HY, Jang MH, Chang MF, 1994, Nuclear localization signals in the core protein of hepatitis C virus, Biochem Biophys Res Commun., 205: 1284-90
- Choo QL, Kuo G, Weiner AJ, Overby LR, Bradley DW, Houghton M, 1989, Isolation of cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome, Science, 244: 359-62
- Choo QL, Kuo G, Ralston R, Weiner A, Chien D, Van Nest G, Han J, Berger K, Thudium K, Kuo C, Kansopon J, McFarland J, Tabrizi A, Ching K, Moss B, Cummins LB, Houghton M, Muchmore E, 1994, Vaccination of chimpanzees against infection by the hepatitis C virus, PNAS USA, 91: 1294-8
- Ciccaglione AR, Marcantonio C, Costantino A, Equestre M, Geraci A, Rapicetta M, 1998, Hepatitis C virus E1 protein induces modification of membrane permeability in E. coli cells, Virology, 10: 1-8
- Cocquerel L, Meunier JC, Pillez A, Wychowski C, Dubuisson J, 1998, A retention signal necessary and sufficient for endoplasmic reticulum localization maps to the transmembrane domain of hepatitis C virus glycoprotein E2, J Virol., 72: 2183-91
- Cocquerel L, Duvet S, Meunier JC, Pillez A, Cacan R, Wychowski C, Dubuisson J, 1999, The transmembrane domain of hepatitis C virus glycoprotein E1 is a signal for static retention in the endoplasmic reticulum, J Virol., 73: 2641-9
- Cohen, J., 1999, The scientific challenge of hepatitis C, Science, 285: 26-30
- Cooper S, Erickson AL, Adams EJ, Kansopon J, Weiner AJ, Chien DY, Houghton M, Parham P, Walker CM, 1999, Analysis of a successful immune response against hepatitis C virus, Immunity, 10:439-49.
- Davis GL, 1999, Hepatitis C virus genotypes and quasispecies, Am J Med., 107(6B): 21-26
- Duvet S, Cocquerel L, Pillez A, Cacan R, Verbert A, Moradpour D, Wychowski C, Dubuisson J, 1998, Hepatitis C virus glycoprotein complex localization in the endoplasmic reticulum involves a determinant for retention and not retrieval, J Biol Chem., 273: 32088-95.
- Enomoto N, Sakuma I, Asahina Y, Kurosaki M, Murakami T, Yamamoto C, Izumi N, Marumo F, Sato C, 1995, Comparison of full-length sequences of interferon-sensitive and resistant hepatitis C virus 1b. Sensitivity to interferon is conferred by amino acid substitutions in the NS5A region, J Clin Invest., 96: 224-30
- Enomoto N, Sakuma I, Asahina Y, Kurosaki M, Murakami T, Yamamoto C, Ogura Y, Izumi N, Marumo F, Sato C, 1996, Mutations in the nonstructural protein 5A gene and response to interferon in patients with chronic hepatitis C virus 1b infection, N Engl J Med., 334: 77-81
- Failla C, Tomei L, De Francesco R, 1994, Both NS3 and NS4A are required for proteolytic processing of hepatitis C virus nonstructural proteins, J Virol., 68: 3753-60
- Flint M, McKeating JA, 1999, The C-terminal reagion of the hepatitis C virus E1 glycoprotein confers localization within the endoplasmic reticulum, J Gen Virol., 80: 1943-7
- Fournillier A, Depla E, Karayiannis P, Vidalin O, Maertens G, Trepo C, Inchauspe G, 1999, Expression of noncovalent hepatitis C virus envelope E1-E2 complexes is not required for the induction of antibodies with neutralizing properties following DNA immunization, J Virol, 73:7497-504
- Fukushi S, Katayama K, Kurihara C, Ishiyama N, Hoshino FB, Ando T, Oya A, proteinase activities in HCV polypeptide expressed in insect cells using, 1994, Complete 5’ noncoding region is necessary for the efficient internal initiation of hepatitis C virus RNA, Biochem Biophys Res Commun., 1992:425-432.
- Gale MJ Jr; Korth MJ, Tang NM, Tan SL, Hopkins DA, Dever TE, Polyak SJ, Gretch DR, Katze MG, 1997, Evidance that hepatitis C virus resistance to interferon is mediated through repression of the PKR protein kinase by the nonstructural 5A protein, Virology, 230: 217-27
- Ghosh AK, Steele R, Meyer K, Ray R, Ray RB, 1999, Hepatitis C virus NS5A protein modulates cell cycle regulatory genes and promotes cell growth, J Gen Virol., 80: 1179-83
- Ghosh AK, Majumder M, Steele R, Yaciuk P, Chrivia J, Ray R, Ray RB, 2000a, Hepatitis C virus NS5A protein modulates transcription through a novel cellular transcription factor SRCAP, J Biol Chem., 275: 7184-8
- Ghosh AK, Majumder M, Steele R, Meyer K, Ray R, Ray RB, 2000b, Hepatitis C virus NS5A protein protects against TNF-alpha mediated apoptotic cell death, Virus Res., 67: 173-8
- Gordon EJ, Bhat R, Liu Q, Wang YF, Tackney C, Prince AM, 2000, Immune responses to hepatitis C virus structural and nonstructural proteins induced by plasmid DNA immunization, The journal of infectious diseases, 181: 42-50.
- Grakoui A, Wychowski C, Lin C, Feistone S M and Rice C M, 1993a, Expression and identification of hepatitis C virus polyprotein cleavage products, J Virol., 67:1385-95
- Grakoui, A., McCourt, D. W., Wychowski, C., Feinstone, S. M. & Rice,C. M., 1993b, A second hepatitis C virus-encoded proteinase, PNAS USA., 90: 10583-7
- Hijikata M, Kato N, Ootsuyama Y, Nakagawa M, Shimotohno K, 1991a, Gene mapping of the putative structural region of the hepatitis C virus genome by in vitro processing analysis, PNAS USA., 88: 5547-51.
- Hijikata M, Kato N, Ootsuyama Y, Nakagawa M, Ohkoshi S, Shimotohno K, 1991b , Hypervariable regions in the putative glycoprotein of hepatitis C virus, Biochem Biophys Res Commun, 175: 220-8
- Hijikata M, Mizushima H, Akagi T, Mori S, Kakiuchi N, Kato N, Tanaka T, Kimura K, Shimotohno K, 1993, Two distinct proteinase activities required for the processing of a putative nonstructural precursor protein of hepatitis C virus, J Virol., 67: 4665-75
- Honda M, Ping LH, Rijnbrand RC, Amphlett E, Clarke B, Rowlands D, Lemon SM, 1996, Structural requirements for initiation of translation by internal ribosome entry within genome-length hepatitis C virus RNA, Virology, 222: 31-42
- Hsieh TY, Matsumoto M, Chou HC, Schneider R, Hwang SB, Lee AS, Lai MM, 1998, Hepatitis C virus core protein interacts with heterogeneous nuclear ribonucleoprotein K, J Biol Chem., 273: 17651-9.
- Ishido S, Fujita T, Hotta H, 1998, Complex formation of NS5B with NS3 and NS4A proteins of hepatitis C virus, Biochem Biophys Res Commun., 244: 35-40
- Ishii K, Tanaka Y, Yap CC, Aizaki H, Matsuura Y, Miyamura T, 1999, Expression of hepatitis C virus NS5B protein: characterization of its RNA polymerase activity and RNA binding, Hepatology, 29: 1227-35
- Ito T, Tahara SM, Lai MM, 1998, The 3'-untranslated region of hepatitis C virus RNA enhances translation from an internal ribosomal entry site, J Virol., 72: 8789-96
- Kim DW, Gwack Y, Han JH, Choe J, 1995, C-terminal domain of the hepatitis C virus NS3 protein contains an RNA helicase activity, Biochem Biophys Res Commun., 215: 160-6
- Kim JL, Morgenstern KA, Lin C, Fox T, Dwyer MD, Landro JA, Chambers SP, Markland W, Lepre CA, O'Malley ET, Harbeson SL, Rice CM, Murcko MA, Caron PR, Thomson JA, 1996, The crystal structure of hepatitis C virus NS3 protease domain complexed with a synthetic NS4A cofactor peptide, Cell, 87: 343-55
- Koch JO, Bartenschlager R, 1999, Modulation of hepatitis C virus NS5A hyperphosphorylation by nonstructural proteins NS3, NS4A and NS4B, J Virol., 73: 7138-46
- Kolykhalov AA, Feinstone SM, Rice CM, 1996, Identification of a highly conserved sequence element at the 3’terminus of hepatitis C virus genome RNA, J Virol., 70: 3363-71.
- Large MK, Kittlesen DJ, Hahn YS, 1999, Suppression of host immune response by the core protein of hepatitis C virus: possible implications for hepatitis C virus persistence, J. Immunol., 162: 931-8.
- Lechner S, Rispeter K, Meisel H, Kraas W, Jung G, Roggendorf M, Zibert A, 1998, Antibodies directed to envelope proteins of hepatitis C virus outside of hypervariable region 1, Virology, 243: 313-21
- Lin C, Lindenbach BD, Pragai BM, McCourt DW, Rice CM, 1994a, Processing in the hepatitis C virus E2-NS2 region: identification of p7 and two distinct E2-specific products with different C termini, J Virol, 68: 5063-73
- Lin C, Pragai BM, Grakoui A, Xu J, Rice CM, 1994b, Hepatitis C virus NS3 serine proteinase: trans-cleavage requirements and processing kinetics, J Virol., 68: 8147-57
- Lo SY, Selby MJ, Ou JH, 1996, Interaction between hepatitis C virus core protein and E1 envelop protein, J Virol., 70: 5177-82
- Lohmann V, Korner F, Herian U, Bartenschlager R, 1997, Biochemical properties of hepatitis C virus NS5B RNA-dependant RNA polymerase and identification of amino acid sequence motifs essential for enzymatic activity, J Virol., 71: 8416-28
- Lohmann V, Roos A, Korner F, Koch JO, Bartenschlager R, 1998, Biochemical and kinetic analyses of NS5B RNA-dependent RNA polymerase of the hepatitis C virus, Virology, 249:108-18
- Makimura M, Miyake S, Akino N, Takamori K, Matsuura Y, Miyamura T, Saito I, 1996, Induction of antibodies against structural proteins of hepatitis C virus in mice using recombinant adenovirus, Vaccine, 14: 28-34.
- Mamiya N, Worman HJ, 1999, Hepatitis C virus core protein binds to a DEAD box RNA helicase, J Biol Chem., 274: 15751-6
- Marusawa H, Hijikata M, Chiba T, Shimotohno K, 1999, Hepatitis C virus core protein inhibits fas- and tumor necrosis factor alpha-mediated apoptosis via NF-kB acti-vation, J Virol., 73: 4713–4720.
- Matsumoto M, Hwang SB, Jeng KS, Zhu N, Lai MM, 1996, Homotypic interaction and multimerization of hepatitis C virus core protein, Virology, 218: 43-51.
- Matsuura Y, Suzuki T, Suzuki R, Sato M, Aizaki H, Saito I, Miyamura T, 1994, Processing of E1 and E2 glycoprotein of hepatitis C virus expressed in mammalian and insect cells, Virology, 205: 141-50
- McHutchison JG, Gordon SC, Schiff ER, Shiffman ML, Lee WM, Rustgi VK, Goodman ZD, Ling MH, Cort S, Albrecht JK, 1998, Inteferon alfa-2b alone or in combination with ribavirin as initial treatment for chronic hepatitis C, The New England journal of Medicine, 339: 1485-92
- Meunier JC, Fournillier A, Choukhi A, Cahour A, Cocquerel L, Dubuisson J, Wychowski C, 1999, Analysis of the glycosylation sites of hepatitis C virus (HCV) glycoprotein E1 and the influence of E1 glycans on the formation of the HCV glycoprotein complex, J Gen Virol., 80: 887-96
- Miller RH, Purcell RH, 1990, Hepatitis C virus shares amino acid sequence similarity with pestiviruses and flaviviruses as well as members of two plant virus supergroups, PNAS USA., 87: 2057-61.
- Mizushima H, Hijikata M, Tanji Y, Kimura K, Shimotohno K, 1994a, Analysis of N-terminal processing of hepatitis C virus, nonstructural protein 2, J Virol., 68: 2731-4
- Mizushima H, Hijikata M, Asabe S, Hirota M, Kimura K, Shimotohno K, 1994b, Two hapatitis C virus glycoprotein E2 products with different C termini, J Virol, 68: 6215-22
- Monazahian M, Bohme I, Bonk S, Koch A, Scholz C, Grethe S, Thomssen R, 1999, Low density lipoprotein receptor as a candidate receptor for hepatitis C virus, J Med Virol., 57:223-9.
- Moriya K, Fujie H, Shintani Y, Yotsuyanagi H, Tsutsumi T, Ishibashi K, Matsuura Y, Kimura S, Miyamura T, Koike K, 1998, The core protein of hepatitis C virus induces hepatocellular carcinoma in transgenic mice, Nat Med., 4: 1065-7
- Nagata S, 1997, Apoptosis by death factor, Cell, 88: 355–365.
- Neddermann P, Clementi A, De Francesco R, 1999, Hyperphosphorylation of the hepatitis C virus NS5A protein requires an active NS3 protease, NS4A, NS4B and NS5A encoded on the same polyprotein, J Virol., 73: 9984-91
- O’Brien V, 1998, Viruses and apoptosis, J Gen Virol., 79: 1833–1845.
- Paliago L, Peri V, Linea C, Camma C, Giunta M, Magrin S, 1999, Natural history of chronic hepatitis C, Ital J Gastroenterol hepatol., 31:28-44
- Pancholi P, Liu Q, Tricoche N, Zhang P, Perkus ME, Prince AM, 2000, DNA prime-canarypox boost with polycistronic hepatitis C virus (HCV) genes generates potent immune responses to HCV structural and nonstructural proteins, J Infect Dis, 182:18-27
- Pestova TV, Shatsky IN, Fletcher SP, Jackson RJ, Hellen CU, 1998, A prokaryotic-like mode of cytoplasmic eukaryotic ribosome binding to the initiation codon during internal translation initiation of hepatitis C and classical swine fever virus RNAs, Genes-Dev., 12: 67-83
- Pileri P, Uematsu Y, Campagnoli S, Galli G, Falugi F, Petracca R, Weiner AJ, Houghton M, Rosa D, Grandi G, Abrignani S, 1998, Binding of hepatitis C virus to CD81, Science 282:938-941
- Ray RB, Lagging LM, Meyer K, Steele R, Ray R, 1995, Transcriptional regulation of cellular and viral promoters by the hepatitis C core protein, Virus Res., 37: 209-20.
- Ray RB, Lagging LM, Meyer K, Ray R, 1996, Hepatitis C virus core protein cooperates with ras and transforms primary rat embryo fibroblasts to tumorigenic phenotype, J Virol., 70: 4438-43
- Ray RB, Steele R, Meyer K, Ray R, 1997, Transcriptional repression of p53 promoter by hepatitis C virus core protein, J Biol Chem., 272: 10983-6.
- Ray RB, Steele R, Meyer K, Ray R, 1998a, Hepatitis C virus core protein represses p21WAF1/Cip1/Sid1 promoter activity, Gene, 208: 331-6
- Ray RB, Meyer K, Steele R, Shrivastava A, Aggarwal BB, Ray R, 1998b, Inhibition of tumor necrosis factor (TNF-a) mediated apoptosis by hepatitis C virus core protein, J Biol Chem., 273: 2256–2259
- Ray RB, Ghosh AK, Meyer K, Ray R, 1999, Functional analysis of a transrepressor domain in the hepatitis C virus core protein, Virus Res., 59: 211-7
- Reynolds JE, Kaminski A, Kettinen HJ, Grace K, Clarke BE, Carroll AR, Rowlands DJ, Jackson RJ, 1995, Unique features of internal initiation of hepatitis C virus RNA translation, EMBO-J, 14: 6010-20.
- Rijnbrand R, Bredenbeek P, van der Straaten T, Whetter L, Inchauspe G, Lemon S, Spaan W, 1995, Almost the entire 5’ nontranslated region of hepatitis C virus is required for cap independent translation, FEBS Lett., 365: 115-9.
- Rosa D, Campagnoli S, Moretto C, Guenzi E, Cousens L, Chin M, Dong C, Weiner AJ, Lau JY, Choo Q-L, Chien D, Pileri P, Houghton M, Abrignani S, 1996, A quantitative test to estimate neutralizing antibodies to the hepatitis C virus: Cytofluorimetric assessment of envelope glycoprotein 2 binding to target cells. Proc Natl Acad Sci U S A 93:1759-1763
- Sakamuro D, Furukawa T, Takegami T, 1995, hepatitis C virus nonstructural protein NS3 transforms NIH 3T3 cells, J Virol., 69: 3893-6
- Santolini E, Migliaccio G, LaMonica N, 1994, Biosynthesis and biochemical properties of the hepatitis C virus core protein, J Virol., 68: 3631-41
- Santolini E, Pacini L, Fipaldini C, Migliaccio G, Monica N, 1995, The NS2 protein of hepatitis C virus is a transmembrane polypeptide, J Virol., 69: 7461-71
- Sato K, Okamoto H, Aihara S, Hoshi Y, Tanaka T, Mishiro S, 1993, Demonstration of sugar moiety on the surface of HCV recovered from the circulation of infected humans, Virology, 196, 354-7
- Satoh S, Tanji Y, Hijikata M, Kimura K, Shimotohno K, 1995, The N-terminal region of hepatitis C virus nonstructural protein 3 (NS3) is essential for stable complex formation with NS4A, J. Virol., 69: 4255-60
- Seeff, L.B., 1999, Natural history of Hepatitis C, The American Journal of Medicine, Vol107(6B): 10-15
- Shimizu YK, Hijikata M, Iwamoto A, Alter HJ, Purcell RH, Yoshikura H, 1994, Neutralizing antibodies against hepatitis C virus and the emergence of neutralization escape mutant viruses, J Virol., 68: 1494-500
- Shimizu Y, Yamaji K, Masuho Y, Yokota T, Inoue H, Sudo K, Satoh S, Shimotohno K, 1996, Identification of the sequence on NS4A required for enhanced cleavage of the NS5A/5B site by hepatitis C virus NS3 protease, J-Virol, 70: 127-32
- Shisler JL, Gooding LR, 1998, Adenoviral inhibitors of the apoptotic cascade, Trends Microbiol., 6: 337–339.
- Shrivastava A, Manna SK, Ray R, Aggarwal BB, 1998, Ectopic expression of hepatitis C virus core protein differentially regulates nuclear transcription factors, J Virol., Vol 72: 9722-8.
- Song MK, Lee SW, Suh YS, Lee KJ, Sung YC, 2000, Enhancement of immunoglobulin G2a and cytotoxic T-lymphocyte responses by a booster immunization with recombinant hepatitis C virus E2 protein in E2 DNA-primed mice, J Virol 74:2920-2925.
- Tai CL, Chi WK, Chen DS, Hwang LH, 1996, The helicase activity associated with hepatitis C virus nonstructural protein 3(NS3), J Virol., 70: 8477-84
- Tan SL, Nakao H, He Y, Vijaysri S, Neddermann P, Jacobs BL, Mayer BJ, Katze MG, 1999, NS5A, a nonstructural protein of hepatitis C virus, binds growth factor receptor-bound protein 2 adaptor protein in a Src homology 3 domain/ligand-dependent manner and perturbs mitogenic signaling, PNAS USA, 96: 5533-8
- Tanaka T, Kato N, Cho MJ, Sugiyama K, Shimotohno K, 1996, Structure of the 3’ terminus of the hepatitis C virus genome, J Virol., 70: 3307-12
- Taylor DR, Shi ST, Romano PR, Barber GN, Lai MC, 1999, Inhibition of the interferon-inducible protein kinase PKR by HCV E2 protein, Science 285: 107-110
- Thompson CB, 1995, Apoptosis in the pathogenesis and treatment of disease, Science, 267: 1456–1462.
- Tsuchihara K, Hijikata M, Fukuda K, Kuroki T, Yamamoto N, Shimotohno K, 1999, Hepatitis C virus core protein regulates cell growth and signal transduction pathway transmitting growth stimuli, Virology, 258: 100-7
- Tsukiyama-Kohara K, Iizuka N, Kohara M, Nomoto A, 1992, Internal ribosome entry site within hepatitis C virus RNA, J Virol., 66: 1476-83.
- Tu H, Gao L, Shi ST, Taylor DR, Yang T, Mircheff AK, Wen Y, Gorbalenya AE, Hwang SB, Lai MM, 1999, Hepatitis C virus RNA polymerase and NS5A complex with a SNARE-like protein, Virology, 263: 30-41
- Wang C, Sarnow P, Siddiqui A, 1993, Translation of human hepatitis C virus RNA in cultured cells is mediated by an internal ribosome-binding mechanism, J Virol., 67: 3338-44.
- Wang XW, Gibson MK, Vermculen W, Yeh H, Forrester K, Sturzbecher HW, Hoeijmakers JH, Harris CC, 1995, Abrogation of p53-induced apoptosis by the hepatitis B virus X gene, Cancer Res., 55: 6012–6016.
- Wang YH, Trowbridge R, Gowans EJ, 1997, Expression and interaction of the hepatitis C virus structural proteins and the 5' untranslated region in baculovirus infected cells, Arch Virol., 142: 2211-23
- Weiner AJ, Brauer MJ, Rosenblatt J, Richman KH, Tung J, Crawford K, Bonino F, Saracco G, Choo QL, Houghton M, Han JH, 1991, Variable and hypervariable domains are found in the regions of HCV corresponding to the flavivirus envelop and NS1 proteins and the pestivirus envelop glycoproteins, Virology, 180: 842-8
- Williams, I., 1999, Epidemiology of Hepatitis C in the United States, The American Journal of Medicine, Vol107(6B): 2-9.
- Yan BS, Liao LY, Leou K, Chang YC, Syu WJ, 1994, Truncating the putative membrane association region circumvents the difficulty of expressing hepatitis C virus protein E1 in Escherichia coli, J Virol Methods, 49: 343-51
- Yan BS, Tam MH, Syu WJ, 1998, Self-association of the C-terminal domain of the hepatitis C virus core protein, Eur J Biochem., 258: 100-6.
- Yanagi M, St Claire M, Emerson SU, Purcell RH, Bukh J, 1999, In vivo analysis of the 3' untranslated region of the hepatitis C virus after in vitro mutagenesis of an infectious cDNA clone, PNAS USA., 96: 2291-5
- Yasui K, Wakita T, Tsukiyama KK, Funahashi SI; Ichikawa M; Kajita T, Moradpour D, Wands JR, Kohara M, 1998, The native form and maturation process of hepatitis C virus core protein, J Virol., 72: 6048-55.
- Yi M, Nakamoto Y, Kaneko S, Yamashita, T, Murakami S, 1997, Delineation of regions important for heteromeric association of hepatitis C virus E1 and E2, Virology, 231: 119-29
- You LR, Chen CM, Lee YHW, 1999, Hepatitis C virus core protein enhances NF-kappaB signal pathway triggering by lymphotoxin-beta receptor ligand and tumor necrosis factor alpha, J Virol., 73: 1672-81
- Zhao WD, Wimmer E, Lahser FC, 1999, Poliovirus/Hepatitis C virus (internal ribosomal entry site-core) chimeric viruses: improved growth properties through modification of a proteolytic cleavage site and requirement for core RNA sequences but not for core-related polypeptides, J Virol., 73: 1546-54
- Zhu L, Liu J, Li Y, Kong Y, Staib C, Sutter G, Wang Y, Li G, 2000, Processing and posttranslational modification of hepatitis C virus structural proteins is modulated by the length of encoding gene sequences, to be submitted.
- Zibert A, Schreier E, Roggendorf M, 1995, Antibodies in human sera specific to hypervariable region 1 of hepatitis C virus can block viral attachment, Virology, 208: 653-61
- Zonaro A, Ravaggi A, Puoti M, Kremsdorf D, Albertini A, Cariani E, 1994, Differential pattern of sequence heterogeneity in the hepatitis C virus E1 and E2/NS1 proteins, J Hepatol., 21: 858-65