
-
生物通官微
陪你抓住生命科技
跳动的脉搏
清华大学颜宁与加州大学合作发PNAS文章
【字体: 大 中 小 】 时间:2012年09月04日 来源:生物通
编辑推荐:
来自加州大学洛杉矶分校,清华大学生科院与医学院的研究人员发表了题为“Dynamics of the l-fucose/H+ symporter revealed by fluorescence spectroscopy”的文章,通过荧光光谱法,揭示了岩藻糖(L-fucose)同向转运体的动力学机制,并提出了分析FucP结构动力学的一种新方法。相关成果公布在《美国国家科学院院刊》(PNAS)杂志上。
生物通报道:来自加州大学洛杉矶分校,清华大学生科院与医学院的研究人员发表了题为“Dynamics of the l-fucose/H+ symporter revealed by fluorescence spectroscopy”的文章,通过荧光光谱法,揭示了岩藻糖(L-fucose)同向转运体的动力学机制,并提出了分析FucP结构动力学的一种新方法。相关成果公布在《美国国家科学院院刊》(PNAS)杂志上。
文章的通讯作者是加州大学洛杉矶分校生理学家H. Ronald Kaback,清华大学生科院颜宁教授,以及孙林风(Linfeng Sun,音译)参与了此项研究,主要为这项研究提供了相关的分析工具和方法。
2010年,颜宁研究组在Nature杂志上发表文章,报道了大肠杆菌岩藻糖(L-fucose)转运蛋白(FucP)结构与功能。FucP从属于Major Facilitator Superfamily (MFS)超家族。MFS超家族转运蛋白是一类非常古老、在各个物种中都起着重要作用的转运蛋白,目前已知一级序列的家族成员超过一万个,它们在营养物质和代谢产物的转运、细菌抗药性以及神经信号传导等各种生理过程中起着重要作用。由于MFS转运蛋白的重要生理功能,它们的结构与功能受到了广泛的关注。
虽然大肠杆菌中FucP相关晶体结构得以报道,但是关于FucP构象动力学目前还并不清楚。在这篇文章中,研究人员通过荧光光谱法,解析了岩藻糖(L-fucose)同向转运体的动力学机制。
研究人员发现在纯化的FucP中添加岩藻糖,会以一种依赖于浓度的方式,无需λmax的转变,就能诱导色氨酸Trp荧光20%的淬灭。这一过程当Trp38和Trp278被Tyr或者Phentermine替代的时候,会被取消,而Trp38和Trp278这两者正是定位于朝外结构的相对面上,并且当Trp两者中的一个突变,也会降低淬灭。因此这两个色氨酸残基都参与了这一现象。
通过进一步的研究,研究人员还发现Trp38,或者Trp278中任何一个被更换(尤其是前者),都会引起荧光淬灭,从而降低了岩藻糖的表面亲和力,抑制岩藻糖活性转运过程,这说明这两个残基可能直接才能与了岩藻糖的结合。
研究人员推测,这种结合能诱导FucP关闭时,朝外结构中一个构象的变化,这样Trp38和Trp278就能接近结合糖,形成一种“被封闭(occluded)”的中间体结构。这两个Trp残基的位置也提出了一种分析FucP结构动力学的特殊方法。
(生物通:万纹)
原文摘要:
Dynamics of the l-fucose/H+ symporter revealed by fluorescence spectroscopy
FucP of Escherichia coli catalyzes l-fucose/H+ symport, and a crystal structure in an outward-facing conformation has been reported. However, nothing is known about FucP conformational dynamics. Here, we show that addition of l-fucose to purified FucP in detergent induces ∼20% quenching of Trp fluorescence in a concentration-dependent manner without a shift in λmax. Quenching is essentially abolished when both Trp38 and Trp278, which are positioned on opposing faces of the outward-facing cavity walls, are replaced with Tyr or Phe, and reduced quenching is observed when either Trp is mutated. Therefore, both Trp residues are involved in the phenomenon. Furthermore, replacement of either Trp38 or Trp278, predominantly Trp38, causes decreased quenching, decreased apparent affinity for l-fucose, and significant inhibition of active l-fucose transport, indicating that the two residues are likely involved directly in sugar binding. It is proposed that sugar binding induces a conformational change in which the outward-facing cavity in FucP closes, thereby bringing Trp38 and Trp278 into close proximity around the bound sugar to form an “occluded” intermediate. The location of these two Trp residues provides a unique method for analyzing structural dynamics in FucP.