
-
生物通官微
陪你抓住生命科技
跳动的脉搏
生物质与燃煤PM2.5中氧化潜能的主导贡献者:氧代芳香族化合物的毒性机制解析
【字体: 大 中 小 】 时间:2025年09月19日 来源:Journal of Hazardous Materials 11.3
编辑推荐:
本研究通过DTT氧化潜能(OP)测定与非靶向化学分析,揭示生物质燃烧PM2.5的氧化毒性显著高于燃煤(OPm高80%),且提取性有机质(EOM)的毒性贡献是水溶性组分(WSF)的4倍。采用UHPLC-Orbitrap MS技术首次明确多酚类(Poly)和稠环芳烃(ConA)及其氧代衍生物为关键毒性驱动组分,为基于健康风险的PM2.5源头控制提供科学依据。
Oxidative potential of WSF and EOM
图1展示了不同燃料类型排放PM中水溶性组分(WSF)和提取性有机质(EOM)的PM质量归一化氧化潜能(OPm)。总体而言,EOM的OPm显著高于WSF(p < 0.05,Kruskal-Wallis H检验)。这一发现与既往研究一致,表明水不溶性化合物对OPm的贡献最大[46][47]。类似地,有报道称水不溶性化合物相较于其水相对应物表现出更强的细胞毒性。
Conclusion
本研究系统评估了典型居民固体燃料燃烧排放PM2.5中WSF和EOM的OPm及关键毒性组分。结果表明,燃烧衍生PM的毒性主要受燃料类型和化学组成调控。总体而言,EOM表现出显著高于WSF的OPm(15.06 ± 5.55 pmol/min/μg vs. 3.89 ± 2.73 pmol/min/μg)。此外, across both solvent fractions, biomass burning PM exhibited significantly higher OPm (24.2 ± 2.8 pmol/min/μg) compared to coal combustion PM (13.2 ± 2.8 pmol/min/μg), representing an 80% increase. UHPLC-Orbitrap MS combined with multivariate stepwise regression identified two major aromatic structural classes—polyphenols (Poly) and condensed aromatics (ConA)—as the most abundant groups and primary drivers of OPm, particularly their oxygenated derivatives. The contributions exhibited phase dependence: Poly accounted for 59.5% of WSF OPm whereas ConA contributed 58.1% in EOM. These findings elucidate key toxic constituents in residential solid fuel combustion, providing a scientific basis for health-focused mitigation strategies targeting anthropogenic PM sources.
生物通微信公众号
知名企业招聘